The Li/MgO catalyst and nanocatalyst were prepared by the incipient wetness impregnation and sol-gel method, respectively. The catalytic performance of the Li/MgO catalyst and nanocatalyst on oxidative coupling of met...The Li/MgO catalyst and nanocatalyst were prepared by the incipient wetness impregnation and sol-gel method, respectively. The catalytic performance of the Li/MgO catalyst and nanocatalyst on oxidative coupling of methane was compared. The catalysts prepared in two ways were characterized by X-ray powder diffraction, Brunauer-Emmett-Teller surface and transmission electron microscope. The catalyst was tested at temperature of 973-1073 K with constant total pressure of 101 kPa. Experimental results showed that Li/MgO nanocatalyst in the oxidative coupling of methane would result in higher conversion of methane, higher selectivity, and higher yield of main products (ethane and ethylene) compared to ordinary catalyst. The results show the improved influence of nanoscale Li/MgO catalyst performance on oxidative coupling of methane.展开更多
文摘The Li/MgO catalyst and nanocatalyst were prepared by the incipient wetness impregnation and sol-gel method, respectively. The catalytic performance of the Li/MgO catalyst and nanocatalyst on oxidative coupling of methane was compared. The catalysts prepared in two ways were characterized by X-ray powder diffraction, Brunauer-Emmett-Teller surface and transmission electron microscope. The catalyst was tested at temperature of 973-1073 K with constant total pressure of 101 kPa. Experimental results showed that Li/MgO nanocatalyst in the oxidative coupling of methane would result in higher conversion of methane, higher selectivity, and higher yield of main products (ethane and ethylene) compared to ordinary catalyst. The results show the improved influence of nanoscale Li/MgO catalyst performance on oxidative coupling of methane.