The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items wi...The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items will be mapped to nearby locations on the map. One of the SOM neural network’s applications is clustering of animals due their features. In this paper we produce an experiment to analyze the SOM in clustering different species of animals.展开更多
文摘The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items will be mapped to nearby locations on the map. One of the SOM neural network’s applications is clustering of animals due their features. In this paper we produce an experiment to analyze the SOM in clustering different species of animals.