The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four te...The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation(IM),ultrasound-enhanced impregnation(UIM), conventional deposition precipitation(DP) using Na OH and homogeneous deposition precipitation(HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR,NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34(UIM) 〉 Cu-SAPO-34(HDP) 〉 Cu-SAPO-34(IM) 〉 Cu-SAPO-34(DP).Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu^2+ions and Cu O species, the number of the acid sites and the dispersion of Cu O species on SAPO-34.展开更多
基金financial support from University of Tabriz and Iranian Nanotechnology Initiative
文摘The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation(IM),ultrasound-enhanced impregnation(UIM), conventional deposition precipitation(DP) using Na OH and homogeneous deposition precipitation(HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR,NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34(UIM) 〉 Cu-SAPO-34(HDP) 〉 Cu-SAPO-34(IM) 〉 Cu-SAPO-34(DP).Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu^2+ions and Cu O species, the number of the acid sites and the dispersion of Cu O species on SAPO-34.