This thesis investigates the influence of zinc oxide (ZnO) on the thermophysical characteristics of natural polymer-based nanofluids. The focus is on pectin nanofluids with incorporated ZnO nanoparticles. In this expe...This thesis investigates the influence of zinc oxide (ZnO) on the thermophysical characteristics of natural polymer-based nanofluids. The focus is on pectin nanofluids with incorporated ZnO nanoparticles. In this experiment, varying concentrations of zinc oxide (ZnO) were combined with a constant amount of pectin to study their effects on the final solution’s characteristics. Initially, ZnO and pectin solutions were prepared individually and subjected to magnetic stirring and sonication. The experiment involved three different concentrations of ZnO: 0.1 g, 0.02 g, and 0.03 g, while the weight of pectin remained constant at 0.05g throughout. After individual preparation, the solutions were mixed, further stirred, and subjected to sonication. Two analysis techniques, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA), were employed to characterize the samples. SEM provided insights into surface morphology and chemical composition, while TGA analyzed mass changes over temperature variations, offering valuable information on material properties. The significance and applications of these techniques in material characterization and analysis were discussed, highlighting their roles in understanding physical and chemical phenomena. The presence of ZnO nanoparticles enhanced the thermal stability of the pectin nanofluids. Contact angle measurements were performed to evaluate the hydrophilicity of the nanofluids. The contact angle trend indicated an increase in hydrophobicity with an increasing concentration of ZnO in the pectin nanofluids. The measured contact angles supported the high stability of the synthesized nanofluids. Overall, this study provides valuable insights into the incorporation of ZnO nanoparticles into pectin nanofluids and their impact on the thermophysical characteristics. The findings contribute to the development of nanofluids for potential applications in drug release and biomedical fields.展开更多
文摘This thesis investigates the influence of zinc oxide (ZnO) on the thermophysical characteristics of natural polymer-based nanofluids. The focus is on pectin nanofluids with incorporated ZnO nanoparticles. In this experiment, varying concentrations of zinc oxide (ZnO) were combined with a constant amount of pectin to study their effects on the final solution’s characteristics. Initially, ZnO and pectin solutions were prepared individually and subjected to magnetic stirring and sonication. The experiment involved three different concentrations of ZnO: 0.1 g, 0.02 g, and 0.03 g, while the weight of pectin remained constant at 0.05g throughout. After individual preparation, the solutions were mixed, further stirred, and subjected to sonication. Two analysis techniques, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA), were employed to characterize the samples. SEM provided insights into surface morphology and chemical composition, while TGA analyzed mass changes over temperature variations, offering valuable information on material properties. The significance and applications of these techniques in material characterization and analysis were discussed, highlighting their roles in understanding physical and chemical phenomena. The presence of ZnO nanoparticles enhanced the thermal stability of the pectin nanofluids. Contact angle measurements were performed to evaluate the hydrophilicity of the nanofluids. The contact angle trend indicated an increase in hydrophobicity with an increasing concentration of ZnO in the pectin nanofluids. The measured contact angles supported the high stability of the synthesized nanofluids. Overall, this study provides valuable insights into the incorporation of ZnO nanoparticles into pectin nanofluids and their impact on the thermophysical characteristics. The findings contribute to the development of nanofluids for potential applications in drug release and biomedical fields.