For water to become suitable for human consumption in most water treatment plants this occurs by making use of the chlorination process where the organic matter is destroyed by the action of chlorine. Chlorine is a di...For water to become suitable for human consumption in most water treatment plants this occurs by making use of the chlorination process where the organic matter is destroyed by the action of chlorine. Chlorine is a disinfectant that at low concentrations meets requirements such as not being toxic to humans and inactivating microorganisms. The reaction of chlorine with organic compounds results in chlorination byproducts, many potentially harmful to human health, such as trihalomethanes, haloacetic acids, among others. The present work aimed to collect and analyze samples of treated water from reservoirs from public schools in the city of Maringá, Brazil. Analyses of haloacetic acids (HAA5: monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid and dibromoacetic acid), natural organic compounds and free residual chlorine were performed (the latter analysis, in loco). The water collection points were chosen in order to maximize the concentration of haloacetic acids that characterize network distant points from treatment station and also samples near the water treatment plant. With the results, the formation of haloacetic acids between the entrance water of the school and the water of the reservoir of the collection points were compared, where higher values were obtained in the reservoirs. Furthermore, the haloacetic acid levels of water supplied to the population close to the treatment station and distant points of the treatment station were compared, resulting in larger values at the distant points. The value of 0.170 mg/L in haloacetic acid (the maximum value allowed by the legislation is 0.080 mg/L) was obtained at a point distant in the network from the treatment plant. The Consolidation Ordinance n.5/2017, current legislation for treated water in Brazil, was used in relation to the maximum allowable values for free residual chlorine and haloacetic acids.展开更多
基金Centro Universitario de Maringa(UNICESUMAR)for the financial and technical support
文摘For water to become suitable for human consumption in most water treatment plants this occurs by making use of the chlorination process where the organic matter is destroyed by the action of chlorine. Chlorine is a disinfectant that at low concentrations meets requirements such as not being toxic to humans and inactivating microorganisms. The reaction of chlorine with organic compounds results in chlorination byproducts, many potentially harmful to human health, such as trihalomethanes, haloacetic acids, among others. The present work aimed to collect and analyze samples of treated water from reservoirs from public schools in the city of Maringá, Brazil. Analyses of haloacetic acids (HAA5: monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid and dibromoacetic acid), natural organic compounds and free residual chlorine were performed (the latter analysis, in loco). The water collection points were chosen in order to maximize the concentration of haloacetic acids that characterize network distant points from treatment station and also samples near the water treatment plant. With the results, the formation of haloacetic acids between the entrance water of the school and the water of the reservoir of the collection points were compared, where higher values were obtained in the reservoirs. Furthermore, the haloacetic acid levels of water supplied to the population close to the treatment station and distant points of the treatment station were compared, resulting in larger values at the distant points. The value of 0.170 mg/L in haloacetic acid (the maximum value allowed by the legislation is 0.080 mg/L) was obtained at a point distant in the network from the treatment plant. The Consolidation Ordinance n.5/2017, current legislation for treated water in Brazil, was used in relation to the maximum allowable values for free residual chlorine and haloacetic acids.