期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
前驱体改性法制备薄层多孔富氨基的石墨相氮化碳用于光催化降解RhB和光催化制氢 被引量:2
1
作者 黄婷 陈佳琪 +8 位作者 张莉莉 alireza khataee 韩巧凤 刘孝恒 孙敬文 朱俊武 潘书刚 汪信 付永胜 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期497-506,共10页
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C_(3)N_(4))作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化... 半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C_(3)N_(4))作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等所制备的块状石墨相氮化碳存在团聚、比表面积小和光生载流子分离效率低等问题,严重抑制了其光催化活性.本文采用前驱体改性法制得具有高效光催化活性的石墨相氮化碳.利用氰基在酸性条件下易水解这一特性,通过调节不同种类和浓度的酸(硝酸、盐酸、磷酸等)改性二氰二胺,制得一系列新前驱体,通过焙烧制备石墨相氮化碳.采用X射线粉末衍射、X射线光电子能谱、傅立叶变换红外光谱、透射电子显微镜和场发射扫描电子显微镜等表征手段对前驱体及氮化碳的结构及微观形貌进行研究.结果表明,通过浓硝酸改性二氰二胺成功制得脒基脲硝酸盐,其煅烧后所得的HNO_(3)-CN(5H-CN)催化剂具有较好的薄层多孔结构,且面内三均三嗪环末端具有丰富的氨基官能团.TG-FTIR结果表明,5H-CN通过不同于传统氮化碳的热缩合过程,导致了其多孔富氨基的结构.光催化性能测试表明,5H-CN对光催化降解罗丹明B(Rh B)具有最佳的催化活性,其准一级速率常数达0.05316 min^(-1),是普通块状石墨相氮化碳(CN)的34倍.此外,5H-CN的光催化制氢性能也远远高于CN.通过紫外-可见漫反射光谱、莫特-肖特基曲线和瞬态光电流测试等方法研究催化剂的形貌结构对光催化活性的影响.结果表明,5H-CN催化剂具有较高的光催化活性主要归因于其薄层多孔结构提供了更大的比表面积(148.76 m^(2)g^(-1)),表面有更多的活性位点,同时有助于光生载流子的有效分离;其面内三均三嗪环的末端边缘丰富的氨基结构使得其能带结构发生变化,更负的导带位置使其光生电子的还原能力更强,从而有利于光催化反应的进行.其光催化机理归纳如下:在5H-CN催化剂光催化降解Rh B过程中,O_(2)·^(-)作为最主要的活性物种可与空穴(h+)同时氧化催化剂表面的Rh B分子,从而达到光催化降解Rh B的作用;在5H-CN催化剂光催化制氢过程中,铂(3wt%Pt)作为助催化剂可以负导带上的光生电子(e-)快速迁移,迁移的e-可以直接还原水中的氢质子生成氢气. 展开更多
关键词 前驱体改性法 石墨相氮化碳 光催化降解 光催化制氢 富氨基结构
下载PDF
Fabrication of g-C_(3)N_(4) nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)nanocomposites:Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light
2
作者 Nasrin Sedaghati Aziz Habibi-Yangjeh alireza khataee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1363-1374,共12页
Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions... Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions were synthesized by a facile solvothermal route.The resultant materials were examined by X-ray photoelectron spectrometer(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),photoluminescence spectroscopy(PL),Fourier transform infrared spectroscopy(FT-IR),UV-Vis diffuse reflection spectroscopy(UV-vis DRS),photocurrent density,electrochemical impedance spectroscopy(EIS),and Brunauer–Emmett–Teller(BET)analyses.After the integration of Fe-MOF with GCN-NSh/Bi_(5)O_(7)Br,the removal constant of tetracycline over the optimal GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite was promoted 33 times compared with that of the pristine GCN.The GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite showed superior photoactivity to azithromycin,metronidazole,and cephalexin removal that was 36.4,20.2,and 14.6 times higher than that of pure GCN,respectively.Radical quenching tests showed that·O_(2)-and h+mainly contributed to the elimination reaction.In addition,the nanocomposite maintained excellent activity after 4 successive cycles.Based on the developed n–n heterojunctions among n-GCN-NSh,n-Bi_(5)O_(7)Br,and n-Fe-MOF semiconductors,the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics. 展开更多
关键词 g-C_(3)N_(4)nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe) metal-organic framework double S-scheme heterojunctions ANTIBIOTICS pho-tocatalytic performance
下载PDF
Separation of methane from different gas mixtures using modified silicon carbide nanosheet: Micro and macro scale numerical studies 被引量:2
3
作者 Golchehreh Bayat Roozbeh Saghatchi +1 位作者 Jafar Azamat alireza khataee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1268-1276,共9页
This research discusses the separation of methane gas from three different gas mixtures,CH4/H2 S,CH4/N2 and CH4/CO2,using a modified silicon carbide nanosheet(Si CNS)membrane using both molecular dynamics(MD)and compu... This research discusses the separation of methane gas from three different gas mixtures,CH4/H2 S,CH4/N2 and CH4/CO2,using a modified silicon carbide nanosheet(Si CNS)membrane using both molecular dynamics(MD)and computational fluid dynamics(CFD)methods.The research examines the effects of different structures of the Si CNSs on the separation of these gas mixtures.Various parameters including the potential of the mean force,separation factor,permeation rate,selectivity and diffusivity are discussed in detail.Our MD simulations showed that the separation of CH4/H2 S,and CH4/CO2 mixtures was successful,while simulation demonstrated a poor result for the CH4/N2 mixture.The effect of temperature on the diffusivity of gas is also discussed,and a correlation is introduced for diffusivity as a function of temperature.The evaluated value for diffusivity is then used in the CFD method to investigate the permeation rate of gas mixtures. 展开更多
关键词 Gas separation Silicon carbide nanosheets Molecular dynamics Computational fluid dynamics
下载PDF
Effects of TiO_2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities 被引量:6
4
作者 Ali Movafeghi alireza khataee +3 位作者 Mahboubeh Abedi Roshanak Tarrahi Mohammadreza Dadpour Fatemeh Vafaei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期130-138,共9页
Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxid... Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles(TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated.Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8 nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPSto plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species. 展开更多
关键词 TiO2 nanoparticles Spirodela polyrrhiza Growth parameters Antioxidant enzymes Pigment contents
原文传递
Sonochemical synthesis of photocatalysts and their applications 被引量:2
5
作者 Kezhen Qi Chunqiang Zhuang +2 位作者 Manjie Zhang Peyman Gholami alireza khataee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第28期243-256,共14页
Sonochemical synthesis has flourished significantly in the last few decades for the preparation of photocatalysts.A large number of photocatalysts have been prepared through sonochemical techniques.This review highlig... Sonochemical synthesis has flourished significantly in the last few decades for the preparation of photocatalysts.A large number of photocatalysts have been prepared through sonochemical techniques.This review highlights the scope of sonochemistry in the preparation of photocatalysts,and their applications in energy production and environmental remediation.Beside,the sonochemical degradation of pollutants is discussed in detail.The progress made in sonochemical synthesis and the future perspective for this technique are summarized here.This review may create more enthusiasm among researchers to pay extra attention to the sonochemical synthesis of materials and add their useful contribution to the investigation of new materials for photocatalytic and other applications.This will propel this technique toward commercial sonosynthesis of nanomaterials. 展开更多
关键词 SONOCHEMISTRY Acoustic cavitation PHOTOCATALYSIS Energy production Environmental remediation
原文传递
Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye(C.I. Acid Blue 92) by pennywort(Hydrocotyle vulgaris) 被引量:1
6
作者 Fatemeh Vafaei Ali Movafeghi alireza khataee 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第11期2214-2222,共9页
The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and pla... The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25~C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems. 展开更多
关键词 PHYTOREMEDIATION anionic dye Hydrocotyle vulgaris antioxidant enzymes photosynthetic pigments
原文传递
Stabilization of chromium(Ⅵ) by hydroxysulfate green rust in chromium(Ⅵ)-contaminated soils
7
作者 Leila ALIDOKHT Shahin OUSTAN +2 位作者 alireza khataee Mohammad R.NEYSHABURI Adel REYHANITABAR 《Pedosphere》 SCIE CAS CSCD 2021年第4期645-657,共13页
Chromium(Cr)-contaminated soils pose a great environmental risk, with high solubility and persistent leaching of Cr(Ⅵ). In this study, hydroxysulfate green rust(GR_(SO4)), with the general formula Fe(Ⅱ)_(4) Fe(Ⅲ)_(... Chromium(Cr)-contaminated soils pose a great environmental risk, with high solubility and persistent leaching of Cr(Ⅵ). In this study, hydroxysulfate green rust(GR_(SO4)), with the general formula Fe(Ⅱ)_(4) Fe(Ⅲ)_(2)(OH)_(12) SO_(4)·8 H_(2) O, was evaluated for its efficiency in Cr(Ⅵ) stabilization via Cr(Ⅵ) reduction to Cr(Ⅲ) in four representative Cr(Ⅵ)-spiked soils. The initial concentrations of phosphate buffer-extractable Cr(Ⅵ)(Cr(Ⅵ)b) in soils 1, 2, 3, and 4 were 382.4, 575.9, 551.3, and 483.7 mg kg^(-1), respectively. Reduction of Cr(Ⅵ) to Cr(Ⅲ) by structural Fe(Ⅱ)(Fe(Ⅱ)s) in GR_(SO4) in all studied soils was fast,wherein the application of GR_(SO4) markedly decreased the amount of Cr(Ⅵ)bat the Cr(Ⅵ)b/Fe(Ⅱ)s stoichiometric mole ratio of 0.33. The kinetics of Cr(Ⅵ)reduction by GR_(SO4) could not be determined as this reaction coincided with the release of Cr(Ⅵ) from soil during the experiment. The concentration of Cr(Ⅵ)bdecreased, as the Cr(Ⅵ)b/Fe(Ⅱ)s ratio decreased from 0.46 to 0.20, generally to below 10 mg kg^(-1). Back-transformation of the generated Cr(Ⅲ)was examined in the presence of manganese oxide birnessite at the birnessite/initial Cr(Ⅲ) mole ratio of 4.5. The results of batch tests showed that only 5.2% of the initial Cr(Ⅲ) was converted to Cr(Ⅵ) after two months, while under field capacity moisture conditions, less than 0.05% of the initial Cr(Ⅲ) was oxidized to Cr(Ⅵ) after six months. The results illustrated that remediation of Cr(Ⅵ)-contaminated soils would be fast, successful, and irreversible with an appropriate quantity of fresh GR_(SO_(4)). 展开更多
关键词 batch system BIRNESSITE Cr(Ⅲ)oxidation layered double hydroxide reduction soil remediation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部