High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the curren...High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the current compositional design of HEAs heavily relies on high Ni and Co contents,compro-mising the balance between properties and cost.Thus,it is crucial to optimize the cost-performance trade-offby fine-tuning the range of Fe,Co,and Ni,while maintaining excellent strength-ductility com-bination.In this study,we propose a novel Fe-based HEA with nanosized precipitates and a heteroge-neous grain distribution,achieving a strength-ductility combination comparable to state-of-the-art Ni-or Co-based HEAs.The alloy benefits from both precipitation hardening and hetero-deformation-induced strengthening attributed to the heterogeneous grain distribution,resulting in excellent yield strength of 1433 MPa,tensile strength of 1599 MPa,and ductility of 22%.The microstructural evolution and its in-fluence on mechanical properties are unraveled with respect to the observation of precipitate-dislocation interaction and hetero-deformation-induced stress(HDI stress)evaluation.This study suggests that the challenge of balancing properties and cost can be addressed through optimized compositional and mi-crostructural design.展开更多
The formability of austenitic high-Mn steels is a critical issue in automotive applications under nonuniformly-deformed environments caused by dynamic strain aging.Among austenite stabilizing alloying elements in thos...The formability of austenitic high-Mn steels is a critical issue in automotive applications under nonuniformly-deformed environments caused by dynamic strain aging.Among austenite stabilizing alloying elements in those steels,Cu has been known as an effective element to enhance tensile properties via controlling the stacking fault energy and stability of austenite.The effects of Cu addition on formability,however,have not been sufficiently reported yet.In this study,the Cu addition effects on formability and surface characteristics in the austenitic high-Mn TRIP steels were analyzed in consideration of inhomogeneous microstructures containing the segregation of Mn and Cu.To reveal determining factors,various mechanical parameters such as total elongation,post elongation,strain hardening rate,normal anisotropy,and planar anisotropy were correlated to the hole-expansion and cup-drawing test results.With respect to microstructural parameters,roles of(Mn,Cu)-segregation bands and resultant Cu-rich FCC precipitates on the formability and surface delamination were also discussed.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2022R1A5A1030054,NRF-2023M3H4A6A01058096).
文摘High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the current compositional design of HEAs heavily relies on high Ni and Co contents,compro-mising the balance between properties and cost.Thus,it is crucial to optimize the cost-performance trade-offby fine-tuning the range of Fe,Co,and Ni,while maintaining excellent strength-ductility com-bination.In this study,we propose a novel Fe-based HEA with nanosized precipitates and a heteroge-neous grain distribution,achieving a strength-ductility combination comparable to state-of-the-art Ni-or Co-based HEAs.The alloy benefits from both precipitation hardening and hetero-deformation-induced strengthening attributed to the heterogeneous grain distribution,resulting in excellent yield strength of 1433 MPa,tensile strength of 1599 MPa,and ductility of 22%.The microstructural evolution and its in-fluence on mechanical properties are unraveled with respect to the observation of precipitate-dislocation interaction and hetero-deformation-induced stress(HDI stress)evaluation.This study suggests that the challenge of balancing properties and cost can be addressed through optimized compositional and mi-crostructural design.
基金supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(Grant No.P0002019)the Korea University Grant for the fifth authorthe Brain Korea 21 PLUS Project for Center for Creative Industrial Materials。
文摘The formability of austenitic high-Mn steels is a critical issue in automotive applications under nonuniformly-deformed environments caused by dynamic strain aging.Among austenite stabilizing alloying elements in those steels,Cu has been known as an effective element to enhance tensile properties via controlling the stacking fault energy and stability of austenite.The effects of Cu addition on formability,however,have not been sufficiently reported yet.In this study,the Cu addition effects on formability and surface characteristics in the austenitic high-Mn TRIP steels were analyzed in consideration of inhomogeneous microstructures containing the segregation of Mn and Cu.To reveal determining factors,various mechanical parameters such as total elongation,post elongation,strain hardening rate,normal anisotropy,and planar anisotropy were correlated to the hole-expansion and cup-drawing test results.With respect to microstructural parameters,roles of(Mn,Cu)-segregation bands and resultant Cu-rich FCC precipitates on the formability and surface delamination were also discussed.