In this paper, the authors extracted and investigated the effect of relative humidity (RH) on some microphysical and optical properties of continental polluted aerosols from OPAC (Optical Properties of Aerosols and Cl...In this paper, the authors extracted and investigated the effect of relative humidity (RH) on some microphysical and optical properties of continental polluted aerosols from OPAC (Optical Properties of Aerosols and Clouds) at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted were radii, volume, number and mass mix ratios as functions of RH while the optical properties were optical depth, extinction, scattering and absorption coefficients single scattering albedo, refractive indices and asymmetric parameters also at eight RHs. Using the microphysical properties, effective hygroscopic growth factors and effective radii of the mixtures were determined while using optical properties we determined the enhancement parameters, effective refractive indices and angstrom coefficients. Using the effective hygroscopic growth, we determined the dependence of the effective hygroscopicity parameter as a function of RH, while using enhancement parameters;we determined the effect of humidification factor on RH and wavelengths. The effective hygroscopic growth and enhancement parameters were then parameterized using some models to determine the effective hygroscopicity parameter, bulk hygroscopicity and humidification factors. We observed that the data fitted the models very well. The effective radii decrease with the increase in RH while the effective hygroscopic growth increases with the increase in RH, and this is in line with the increase in angstrom parameters, and this shows increase in mode size with the increase in RH. The angstrom coefficients show that the mixture has a bimodal type of distribution with the dominance of fine mode particles.展开更多
The present work focused on the effect of relative humidity (RH) on some microphysical and optical properties of maritime tropical aerosols from the software package OPAC (Optical Properties of Aerosols and Clouds) da...The present work focused on the effect of relative humidity (RH) on some microphysical and optical properties of maritime tropical aerosols from the software package OPAC (Optical Properties of Aerosols and Clouds) data at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted were radii, volume mix ratio, number mix ratio and mass mix ratio as a function of RH while the optical properties were optical depth, extinction, scattering and absorption coefficients single scattering albedo, refractive indices and asymmetric parameters. The hygroscopic growth and enhancement parameters were then parameterized by using some models to determine the hygroscopicity, bulk hygroscopicity, humidification factors and some other parameters that depend on RH and/or wavelengths. The results showed that the data fitted our models very well and can be used to extrapolate the hygroscopic growth at any RH and enhancement parameters at any RH and wavelengths. The importance of determining gfmix(RH) as a function of RH and volume fractions, mass fractions and number fractions, and enhancement parameters as a function of RH. The effective radii increases with the increase in RH, while Angstrom coefficients decrease with the increase in RH and this signifies the dominance of coarse mode particles. The angstrom coefficients show that the mixture has bimodal type of distribution and the mode size increases with the increase in RH.展开更多
In this paper, the authors investigated some microphysical and optical properties of continental clean aerosols from OPAC to determine the effect of hygroscopic growth at the spectral range of 0.25 μm to 2.5 μm and ...In this paper, the authors investigated some microphysical and optical properties of continental clean aerosols from OPAC to determine the effect of hygroscopic growth at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (RHs) (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%). The microphysical properties extracted were radii, volume mix ratio, number mix ratio and mass mix ratio as a function of RH while the optical properties are scattering and absorption coefficients and asymmetric parameters. Using the microphysical properties, growth factors of the mixtures were determined while using optical properties the enhancement parameters were determined and then parameterized using some models. We observed that the data fitted the models very well. The angstrom coefficients show that the mixture has bimodal type of distribution with the dominance of fine mode particles.展开更多
文摘In this paper, the authors extracted and investigated the effect of relative humidity (RH) on some microphysical and optical properties of continental polluted aerosols from OPAC (Optical Properties of Aerosols and Clouds) at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted were radii, volume, number and mass mix ratios as functions of RH while the optical properties were optical depth, extinction, scattering and absorption coefficients single scattering albedo, refractive indices and asymmetric parameters also at eight RHs. Using the microphysical properties, effective hygroscopic growth factors and effective radii of the mixtures were determined while using optical properties we determined the enhancement parameters, effective refractive indices and angstrom coefficients. Using the effective hygroscopic growth, we determined the dependence of the effective hygroscopicity parameter as a function of RH, while using enhancement parameters;we determined the effect of humidification factor on RH and wavelengths. The effective hygroscopic growth and enhancement parameters were then parameterized using some models to determine the effective hygroscopicity parameter, bulk hygroscopicity and humidification factors. We observed that the data fitted the models very well. The effective radii decrease with the increase in RH while the effective hygroscopic growth increases with the increase in RH, and this is in line with the increase in angstrom parameters, and this shows increase in mode size with the increase in RH. The angstrom coefficients show that the mixture has a bimodal type of distribution with the dominance of fine mode particles.
文摘The present work focused on the effect of relative humidity (RH) on some microphysical and optical properties of maritime tropical aerosols from the software package OPAC (Optical Properties of Aerosols and Clouds) data at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted were radii, volume mix ratio, number mix ratio and mass mix ratio as a function of RH while the optical properties were optical depth, extinction, scattering and absorption coefficients single scattering albedo, refractive indices and asymmetric parameters. The hygroscopic growth and enhancement parameters were then parameterized by using some models to determine the hygroscopicity, bulk hygroscopicity, humidification factors and some other parameters that depend on RH and/or wavelengths. The results showed that the data fitted our models very well and can be used to extrapolate the hygroscopic growth at any RH and enhancement parameters at any RH and wavelengths. The importance of determining gfmix(RH) as a function of RH and volume fractions, mass fractions and number fractions, and enhancement parameters as a function of RH. The effective radii increases with the increase in RH, while Angstrom coefficients decrease with the increase in RH and this signifies the dominance of coarse mode particles. The angstrom coefficients show that the mixture has bimodal type of distribution and the mode size increases with the increase in RH.
文摘In this paper, the authors investigated some microphysical and optical properties of continental clean aerosols from OPAC to determine the effect of hygroscopic growth at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (RHs) (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%). The microphysical properties extracted were radii, volume mix ratio, number mix ratio and mass mix ratio as a function of RH while the optical properties are scattering and absorption coefficients and asymmetric parameters. Using the microphysical properties, growth factors of the mixtures were determined while using optical properties the enhancement parameters were determined and then parameterized using some models. We observed that the data fitted the models very well. The angstrom coefficients show that the mixture has bimodal type of distribution with the dominance of fine mode particles.