We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the...We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the presence of 100 ps(pico-second) and 100 ns(nano-second) laser pulses is described in the form of rate equations. We provide a brief idea of how the optical energy transfer takes place in the light-matter interaction and we also discuss the absorption as a function of pulse width and repetition rate. We also plot the z-scan transmittance curve as a function of number of excitation pulses participating in the absorption.展开更多
文摘We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the presence of 100 ps(pico-second) and 100 ns(nano-second) laser pulses is described in the form of rate equations. We provide a brief idea of how the optical energy transfer takes place in the light-matter interaction and we also discuss the absorption as a function of pulse width and repetition rate. We also plot the z-scan transmittance curve as a function of number of excitation pulses participating in the absorption.