The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomia...The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials,modified to accommodate a C~0-continuous expansion. Computationally and theoretically, by increasing the polynomial order p,high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed.展开更多
For robust nonlinear wave simulation in a moving reference frame, we recast the free surface problem in Hamilton-Jacobi form and propose a Weighted Essentially Non-Oscillatory (WENO) scheme to automatically handle t...For robust nonlinear wave simulation in a moving reference frame, we recast the free surface problem in Hamilton-Jacobi form and propose a Weighted Essentially Non-Oscillatory (WENO) scheme to automatically handle the upwinding of the convective term. A new automatic procedure for deriving the linear WENO weights based on a Taylor series expansion is introduced. A simplified smoothness indicator is proposed and is shown to perform well. The scheme is combined with high-order explicit Runge-Kutta time integration and a dissipative Lax-Friedrichs-type flux to solve for nonlinear wave propagation in a moving frame of reference. The WENO scheme is robust and less dissipative than the equivalent order upwind-biased finite difference scheme for all ratios of frame of reference to wave propagation speed tested. This provides the basis for solving general nonlinear wave-structure interaction problems at forward speed.展开更多
文摘The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials,modified to accommodate a C~0-continuous expansion. Computationally and theoretically, by increasing the polynomial order p,high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed.
文摘For robust nonlinear wave simulation in a moving reference frame, we recast the free surface problem in Hamilton-Jacobi form and propose a Weighted Essentially Non-Oscillatory (WENO) scheme to automatically handle the upwinding of the convective term. A new automatic procedure for deriving the linear WENO weights based on a Taylor series expansion is introduced. A simplified smoothness indicator is proposed and is shown to perform well. The scheme is combined with high-order explicit Runge-Kutta time integration and a dissipative Lax-Friedrichs-type flux to solve for nonlinear wave propagation in a moving frame of reference. The WENO scheme is robust and less dissipative than the equivalent order upwind-biased finite difference scheme for all ratios of frame of reference to wave propagation speed tested. This provides the basis for solving general nonlinear wave-structure interaction problems at forward speed.