We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) ...We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance.展开更多
The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “o...The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “onozuka” R\|10, 0\^01% pectolyase Y\|23,0\^15% macerozyme R\|10 and 0\^1% hemicellulase at 25℃. Outward and inward single channels in plasma membrane were observed using cell\|attached recording of patch\|clamp technique. In this study, single channel records showed that more than one species of channel were obtained. These attempts in protoplast isolation and ion channel recording offers the opportunity to characterize cellular mechanisms of salt tolerance in tree species.展开更多
Soil water potential indicates the water status of the soil and the need for irrigation. The effect of hydrogel amendment to the upper sand soil layer on water infiltration into the lower un-amended sand layer, irriga...Soil water potential indicates the water status of the soil and the need for irrigation. The effect of hydrogel amendment to the upper sand soil layer on water infiltration into the lower un-amended sand layer, irrigation frequency, water use efficiency and biomass production of Agrostis stolonifera was investigated. The upper 25 cm sand layer in three identical buckets was amended at 0.4%, 0.2% and a control (no hydrogel) while the lower 25 cm sand layer separated from the upper layer by a wire mesh in the same buckets was un-amended. Agrostis stolonifera seeds were sown in each bucket and adequately irrigated using a hand sprayer. Potential meter electrodes were inserted at three random positions in each of the buckets and subsequent irrigations were done when a pressure of 600 bars was recorded in any of the three treatments. Data were collected on irrigation frequency, water content in the lower layer, water use efficiency and biomass production of Agrostis stolonifera. The mean water potential in the lower 25 cm layer un-amended sand was significantly more negative in the 0.4% hydrogel than in the control. More water content (10%) was recorded in the lower layer under the control bucket than in either the 0.2% and 0.4% hydrogel amended buckets. The frequency of irrigation was three-fold in the control compared to the 0.4% hydrogel amended sand. The hydrogel amended sand significantly increased the shoot and root biomass of Agrostis stolonifera by 2.2 and 4 times respectively compared to the control. The 0.4% hydrogel amendment in sand increased the water use efficiency of grass eight fold with respect to the control. The hydrogel stimulated development of a dense root network and root aggregation that increased contact of the roots with moisture thus improving water use efficiency of hydrogel amended soil. The results suggest that hydrogels can improve sandy soil properties for plant growth by absorbing and keeping water longer in the soil matrix thus reducing watering frequency.展开更多
Super Absorbent Polyacrylate (SAP) hydrogels absorb and store water thereby aiding plant establishment when incurporated in the soil. The effect of cross-linked SAP hydrogel amendment on the performance of tree seedli...Super Absorbent Polyacrylate (SAP) hydrogels absorb and store water thereby aiding plant establishment when incurporated in the soil. The effect of cross-linked SAP hydrogel amendment on the performance of tree seedlings of Picea abies, Pinus sylivestris and Fagus sylvatica grown in temperate soils under water stress and non-water stress periods was investigated in a green house. The objective was to compare the root and shoot biomass of seedlings of the three species grown in sand, loam and clay soils amended with 0.4% w/w hydrogel in non water stress conditions as well as survival, root and shoot biomass after subjection to water stress. The seedlings were grown for 16 weeks, harvested and shoot as well as root biomass determined before water stress. The seedlings were also subjected to water stress and their biomass assessed at death following the water stress. The results showed that root and shoot biomass were generally higher in hydrogel amended soils compared to the controls. Root and shoot biomass of Fagus sylvatica was lower compared to Picea abies and Pinus sylivestris before water stress. The 0.4% hydrogel amendment significantly increased species’ survival in the different soils studied. Although root biomass was higher in hydrogel amended sandy soil compared to other soils, P. sylivestris and F. sylvatica shoot biomass were higher in hydrogel amended clay and loam soils compared to the sandy soil after water stress. Biomass was higher in sand compared to loam and clay soils under non-water and water stressed conditions. Since SAP hydrogel amendment improved the survival and biomass production of tree seedlings before and after water stress, use of SAPs could be promoted to enhance seedling production in water stress and non-water stress environments.展开更多
文摘We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance.
文摘The authors used suspension cells of Populus euphratica to isolate protoplast in the present study. Protoplasts were successfully obtained after 4 hours incubation in enzyme solution containing 1 0% cellulase “onozuka” R\|10, 0\^01% pectolyase Y\|23,0\^15% macerozyme R\|10 and 0\^1% hemicellulase at 25℃. Outward and inward single channels in plasma membrane were observed using cell\|attached recording of patch\|clamp technique. In this study, single channel records showed that more than one species of channel were obtained. These attempts in protoplast isolation and ion channel recording offers the opportunity to characterize cellular mechanisms of salt tolerance in tree species.
文摘Soil water potential indicates the water status of the soil and the need for irrigation. The effect of hydrogel amendment to the upper sand soil layer on water infiltration into the lower un-amended sand layer, irrigation frequency, water use efficiency and biomass production of Agrostis stolonifera was investigated. The upper 25 cm sand layer in three identical buckets was amended at 0.4%, 0.2% and a control (no hydrogel) while the lower 25 cm sand layer separated from the upper layer by a wire mesh in the same buckets was un-amended. Agrostis stolonifera seeds were sown in each bucket and adequately irrigated using a hand sprayer. Potential meter electrodes were inserted at three random positions in each of the buckets and subsequent irrigations were done when a pressure of 600 bars was recorded in any of the three treatments. Data were collected on irrigation frequency, water content in the lower layer, water use efficiency and biomass production of Agrostis stolonifera. The mean water potential in the lower 25 cm layer un-amended sand was significantly more negative in the 0.4% hydrogel than in the control. More water content (10%) was recorded in the lower layer under the control bucket than in either the 0.2% and 0.4% hydrogel amended buckets. The frequency of irrigation was three-fold in the control compared to the 0.4% hydrogel amended sand. The hydrogel amended sand significantly increased the shoot and root biomass of Agrostis stolonifera by 2.2 and 4 times respectively compared to the control. The 0.4% hydrogel amendment in sand increased the water use efficiency of grass eight fold with respect to the control. The hydrogel stimulated development of a dense root network and root aggregation that increased contact of the roots with moisture thus improving water use efficiency of hydrogel amended soil. The results suggest that hydrogels can improve sandy soil properties for plant growth by absorbing and keeping water longer in the soil matrix thus reducing watering frequency.
文摘Super Absorbent Polyacrylate (SAP) hydrogels absorb and store water thereby aiding plant establishment when incurporated in the soil. The effect of cross-linked SAP hydrogel amendment on the performance of tree seedlings of Picea abies, Pinus sylivestris and Fagus sylvatica grown in temperate soils under water stress and non-water stress periods was investigated in a green house. The objective was to compare the root and shoot biomass of seedlings of the three species grown in sand, loam and clay soils amended with 0.4% w/w hydrogel in non water stress conditions as well as survival, root and shoot biomass after subjection to water stress. The seedlings were grown for 16 weeks, harvested and shoot as well as root biomass determined before water stress. The seedlings were also subjected to water stress and their biomass assessed at death following the water stress. The results showed that root and shoot biomass were generally higher in hydrogel amended soils compared to the controls. Root and shoot biomass of Fagus sylvatica was lower compared to Picea abies and Pinus sylivestris before water stress. The 0.4% hydrogel amendment significantly increased species’ survival in the different soils studied. Although root biomass was higher in hydrogel amended sandy soil compared to other soils, P. sylivestris and F. sylvatica shoot biomass were higher in hydrogel amended clay and loam soils compared to the sandy soil after water stress. Biomass was higher in sand compared to loam and clay soils under non-water and water stressed conditions. Since SAP hydrogel amendment improved the survival and biomass production of tree seedlings before and after water stress, use of SAPs could be promoted to enhance seedling production in water stress and non-water stress environments.