Previous in vivo proton magnetic resonance spectroscopic imaging ( 1H-MRSI) studies have found reduced levels of N-acetyl-aspartate (NAA) in multiple sclerosis (MS) lesions, the surrounding normal-appearing white matt...Previous in vivo proton magnetic resonance spectroscopic imaging ( 1H-MRSI) studies have found reduced levels of N-acetyl-aspartate (NAA) in multiple sclerosis (MS) lesions, the surrounding normal-appearing white matter (NAWM) and cortical grey matter (CGM), suggesting neuronal and axonal dysfunction and loss. Other metabolites, such as myoinositol (Ins), creatine (Cr), choline (Cho), and glutamate plus glutamine (Glx), can also be quantified by 1H-MRSI, and studies have indicated that concentrations of these metabolites may also be altered in MS. Relatively little is known about the time course of such metabolite changes. This preliminary study aimed to characterise changes in total NAA (tNAA, the sum of NAA and N-acetyl-aspartyl-glutamate), Cr, Cho, Ins and Glx concentrations in NAWM and in CGM, and their relationship with clinical outcome, in subjects with clinically early relapsing-remitting MS (RRMS). Twenty RRMS subjects and 10 healthy control subjects underwent 1H-MRSI examinations yearly for two years. Using the LCModel, tNAA, Cr, Cho, Ins and Glx concentrations were estimated both in NAWM and CGM. At baseline, the concentration of tNAA was significantly reduced in the NAWM of the MS patients compared to the control group (-7 %, p = 0.003), as well as in the CGM (-8.7 %, p = 0.009). NAWM tNAA concentrations tended to recover from baseline, but otherwise tissue metabolite profiles did not significantly change in the MS subjects, or relatively between MS and healthy control subjects. While neuronal and axonal damage is apparent from the early clinical stages of MS, this study suggests that initially it may be partly reversible. Compared with other MR imaging measures, serial 1H-MRSI maybe relatively less sen sitive to progressive pathological tissue changes in early RRMS.展开更多
文摘Previous in vivo proton magnetic resonance spectroscopic imaging ( 1H-MRSI) studies have found reduced levels of N-acetyl-aspartate (NAA) in multiple sclerosis (MS) lesions, the surrounding normal-appearing white matter (NAWM) and cortical grey matter (CGM), suggesting neuronal and axonal dysfunction and loss. Other metabolites, such as myoinositol (Ins), creatine (Cr), choline (Cho), and glutamate plus glutamine (Glx), can also be quantified by 1H-MRSI, and studies have indicated that concentrations of these metabolites may also be altered in MS. Relatively little is known about the time course of such metabolite changes. This preliminary study aimed to characterise changes in total NAA (tNAA, the sum of NAA and N-acetyl-aspartyl-glutamate), Cr, Cho, Ins and Glx concentrations in NAWM and in CGM, and their relationship with clinical outcome, in subjects with clinically early relapsing-remitting MS (RRMS). Twenty RRMS subjects and 10 healthy control subjects underwent 1H-MRSI examinations yearly for two years. Using the LCModel, tNAA, Cr, Cho, Ins and Glx concentrations were estimated both in NAWM and CGM. At baseline, the concentration of tNAA was significantly reduced in the NAWM of the MS patients compared to the control group (-7 %, p = 0.003), as well as in the CGM (-8.7 %, p = 0.009). NAWM tNAA concentrations tended to recover from baseline, but otherwise tissue metabolite profiles did not significantly change in the MS subjects, or relatively between MS and healthy control subjects. While neuronal and axonal damage is apparent from the early clinical stages of MS, this study suggests that initially it may be partly reversible. Compared with other MR imaging measures, serial 1H-MRSI maybe relatively less sen sitive to progressive pathological tissue changes in early RRMS.