It is well known that a supercritical single-type Bienayme-Galton-Watson process can be viewed as a decomposable branching process formed by two subtypes of particles: those having infinite line of descent and those w...It is well known that a supercritical single-type Bienayme-Galton-Watson process can be viewed as a decomposable branching process formed by two subtypes of particles: those having infinite line of descent and those who have finite number of descendants. In this paper we analyze such a decomposition for the linear-fractional Bienayme-Galton-Watson processes with countably many types. We find explicit expressions for the main characteristics of the reproduction laws for so-called skeleton and doomed particles.展开更多
文摘It is well known that a supercritical single-type Bienayme-Galton-Watson process can be viewed as a decomposable branching process formed by two subtypes of particles: those having infinite line of descent and those who have finite number of descendants. In this paper we analyze such a decomposition for the linear-fractional Bienayme-Galton-Watson processes with countably many types. We find explicit expressions for the main characteristics of the reproduction laws for so-called skeleton and doomed particles.