In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field k and let A be a left partial H-module algebra. We study the H-prime ...In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field k and let A be a left partial H-module algebra. We study the H-prime and the H-Jacobson radicals of A and their relations with the prime and the Jacobson radicals of A#H, respectively. In particular, we prove that if A is H-semiprimitive, then A^fH is semiprimitive provided that all irreducible representations of A are finite-dimensional, or A is an affine PI-algebra over k and k is a perfect field, or A is locally finite. Moreover, we prove that A=#=H is semiprime provided that A is an H-semiprime PI-algebra, generalizing to the setting of partial actions the known results for global actions of Hopf algebras.展开更多
文摘In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field k and let A be a left partial H-module algebra. We study the H-prime and the H-Jacobson radicals of A and their relations with the prime and the Jacobson radicals of A#H, respectively. In particular, we prove that if A is H-semiprimitive, then A^fH is semiprimitive provided that all irreducible representations of A are finite-dimensional, or A is an affine PI-algebra over k and k is a perfect field, or A is locally finite. Moreover, we prove that A=#=H is semiprime provided that A is an H-semiprime PI-algebra, generalizing to the setting of partial actions the known results for global actions of Hopf algebras.