期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamics and Activity of Iron-Reducing Bacterial Populations in a West African Rice Paddy Soil under Subsurface Drainage: Case Study of Kamboinse in Burkina Faso 被引量:2
1
作者 Cécile Harmonie Otoidobiga amadou keita +2 位作者 Hamma Yacouba Alfred S. Traore Dayéri Dianou 《Agricultural Sciences》 2015年第8期860-869,共10页
Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not b... Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not be underestimated, the bulk of these processes can be ascribed to the specific activity of Iron-Reducing Bacteria (IRB). The reducing conditions of waterlogged lowland soils boost iron toxicity through the reduction of almost all iron into ferrous form (Fe2+), which can cause disorder in rice plant and crop yield losses. Aiming to contribute at the improvement of rice yield in Africa, an experiment was developed to evaluate the impact of subsurface drainage on IRB dynamics and activity during rice cultivation. Twelve concrete microplots with a clay-loam soil and a rice variety susceptible to iron toxicity (FKR 19) were used for the experiment. Soil in microplots was drained for 7 days (P1), 14 days (P2), and 21 days (P3), respectively. Control (T) microplots without drainage were prepared similarly. The evolution of IRB populations and the content of ferrous iron in the paddy soil and in soil near rice root were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. Data obtained were analyzed in relation to drainage frequency, rice growth stage, and rice yield using the Student t test and XLSTAT 7.5.2 statistical software. From the results obtained, the subsurface drainage reduced significantly IRB populations (p = 0.024). However, the drainage did not affect significantly ferrous iron concentration in the soil near rice roots (p = 0.708). The concentration of ferrous iron (p < 0.0001) in soil near rice roots and the number of IRB (p < 0.0001) were significantly higher during the rice tillering and maturity stages. Although no significant difference was observed for rice yield among treatments (p = 0.209), the P2 subsurface drainage showed the highest yield and the lowest concentration of ferrous iron in soil near rice roots. 展开更多
关键词 Iron-Reducing Bacteria RICE Iron Toxicity SUBSURFACE Drainage
下载PDF
Estimation of Soil Hydrodynamic Parameters Related to Agricultural Practices -Case of the Tougou Experimental Site (Burkina Faso)
2
作者 Dial Niang Mahamadou Koita +3 位作者 amadou keita Medogbe Christelle Manuela Houndayi Cheick Oumar Zoure Amagana Emmanuel Dara 《Journal of Environmental Science and Engineering(A)》 2017年第10期527-534,共8页
关键词 布基纳法索 土壤水 动力学参数 惯例 农业 试验性 大小写 地点
下载PDF
A Single-Season Irrigated Rice Soil Presents Higher Iron Toxicity Risk in Tropical Savannah Valley Bottoms
3
作者 amadou keita Hamma Yacouba +1 位作者 Laszlo G. Hayde Bart Schultz 《Open Journal of Soil Science》 2013年第7期314-322,共9页
With the aim of finding the geochemical differences and helping to build alleviating strategies against iron toxicity, two hematite dominant valley bottoms irrigating rice soils were investigated in the Tropical Savan... With the aim of finding the geochemical differences and helping to build alleviating strategies against iron toxicity, two hematite dominant valley bottoms irrigating rice soils were investigated in the Tropical Savannah region of Burkina Faso. The first site was Tiefora, a 15-ha modern double-season irrigated rice system and moderately affected by iron toxicity (10% of the area with a toxicity score of 4). The second site was Moussodougou, a 35-ha traditional singleseason irrigated rice valley-bottom, with 50% facing more severe iron toxicity (score 7). Nine soil extracts were taken from three depths—30, 50 and 100 cm—i.e. 27 at Tiefora and 27 at Moussodogou. Five techniques were used to measure the data: 1) the ferrous iron concentration was determined using a reflectometer, 2) a pH-meter yielded the pH, 3) clay-proportions were obtained by United States Department of Agriculture (USDA) grain size analysis and densitometry, 4) the organic matter was determined by oven drying (900℃) and v) the dry bulk density was determined by using undisturbed soil samples. Statistical hypothesis testing of One-way ANOVA and Welch t-test was applied to the data to isolate the similarities and the differences between the two sites. A geochemical analysis followed to find the causes of these differences. The results showed that while oxidation of pyrite leads to a simultaneous increase in Fe2+ concentrations and acidity in the soils of coastal floodplains and mangroves, the oxidation of hematite in Tropical savannah valley bottoms decreases Fe2+ but also increases acidity during the dry season. As a consequence, it was found that the single-season irrigation scheme Moussodougou is significantly (p-value 0.4%) more acidic (pH 5.7) than the double-season system of Tiefora (6.4) with also 750 - 1800 mg/l higher ferrous Fe2+. The ferrous iron reached 3000 mg/l in some layers in Moussodougou. This result is a justification to modernize a traditional single-season spate irrigation schemes into a double-season irrigated rice scheme. 展开更多
关键词 ANOVA Burkina Faso HEMATITE Iron Toxicity Rice Soil Sampling Tropical SAVANNAH VALLEY Bottoms Welch T-TEST
下载PDF
Dynamics and Activity of Sulfate-Reducing Bacterial Populations in Paddy Soil under Subsurface Drainage: Case Study of Kamboinse in Burkina Faso
4
作者 Cécile Harmonie Otoidobiga amadou keita +2 位作者 Hamma Yacouba Alfred S. Traore Dayéri Dianou 《Agricultural Sciences》 2015年第11期1393-1403,共11页
Sulfide toxicity is a common disease generally associated with iron toxicity which occurs in rice fields when the Sulfate-Reducing Bacteria (SRB) produce sulfides ions in anaerobic conditions. The high quantity of sul... Sulfide toxicity is a common disease generally associated with iron toxicity which occurs in rice fields when the Sulfate-Reducing Bacteria (SRB) produce sulfides ions in anaerobic conditions. The high quantity of sulfides ions in the soil solution upsets the mineral element balance in the rice, affects its growth and causes crop yield losses. In Burkina Faso, many rice field soils are abandoned due to sulfides toxicity. The present study was developed to evaluate the impact of subsurface drainage on SRB dynamics and activity during rice cultivation and the incidence on rice production. Twelve concrete microplots with a clay-loam soil and a rice variety susceptible to sulfides toxicity (FKR 19) were used for the experiment. Soil in microplots was drained for 7 days (P1), 14 days (P2), and 21 days (P3), respectively. Control (T) microplots without drainage were prepared similarly. The evolution of SRB populations and the content of sulfides ions in the paddy soil and in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. Data obtained were analyzed in relation to drainage frequency, rice growth stage, and rice yield using the Student’s t-test and XLSTAT 7.5.2 statistical software. From the results obtained, the subsurface drainage did not affect significantly SRB populations (P = 0.187). However, the drainage affected significantly sulfides concentration in the soil near rice roots (P = 0.032). The concentration of sulfides (P < 0.0001) in soil near rice roots and the number of SRB (P < 0.0001) were significantly higher during the rice tillering and maturity stages. Although no significant difference was observed for rice yield among treatments (P = 0.209), the P2 subsurface drainage showed the highest yield and a low concentration of sulfides in soil near rice roots. 展开更多
关键词 Sulfate-Reducing BACTERIA Sulfides RICE TOXICITY SUBSURFACE Drainage
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部