期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Data Mining with Comprehensive Oppositional Based Learning for Rainfall Prediction
1
作者 Mohammad Alamgeer amal al-rasheed +3 位作者 Ahmad Alhindi Manar Ahmed Hamza Abdelwahed Motwakel Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第2期2725-2738,共14页
Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models ca... Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques. 展开更多
关键词 Data mining rainfall prediction deep learning correlation matrix hyperparameter tuning metaheuristics
下载PDF
Robust Image Watermarking Using LWT and Stochastic Gradient Firefly Algorithm
2
作者 Sachin Sharma Meena Malik +3 位作者 Chander Prabha amal al-rasheed Mona Alduailij Sultan Almakdi 《Computers, Materials & Continua》 SCIE EI 2023年第4期393-407,共15页
Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa l... Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics. 展开更多
关键词 Image watermarking lifting wavelet transform discrete wavelet transform(DWT) firefly technique invariant moments
下载PDF
Text Augmentation-Based Model for Emotion Recognition Using Transformers
3
作者 Fida Mohammad Mukhtaj Khan +4 位作者 Safdar Nawaz Khan Marwat Naveed Jan Neelam Gohar Muhammad Bilal amal al-rasheed 《Computers, Materials & Continua》 SCIE EI 2023年第9期3523-3547,共25页
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally intelligentmachines.Graph-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC tasks.However,their... Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally intelligentmachines.Graph-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC tasks.However,their limited ability to collect and acquire contextual information hinders their effectiveness.We propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address this.The proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human emotions.Themodel used text augmentation techniques to producemore training data,improving the proposed model’s accuracy.Transformer encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual information.This integration improves the accuracy and robustness of the proposed model.Furthermore,we present a method for balancing the training dataset by creating enhanced samples from the original dataset.By balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed model.Experimental results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ERC.TA-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based encoding.The balanced dataset and the additional training samples also enhance its resilience.These findings highlight the significance of transformer-based approaches for special emotion recognition in conversations. 展开更多
关键词 Emotion recognition in conversation graph-based network text augmentation-basedmodel multimodal emotion lines dataset bidirectional encoder representation for transformer
下载PDF
Competitive Multi-Verse Optimization with Deep Learning Based Sleep Stage Classification
4
作者 Anwer Mustafa Hilal amal al-rasheed +5 位作者 Jaber SAlzahrani Majdy M.Eltahir Mesfer Al Duhayyim Nermin M.Salem Ishfaq Yaseen Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1249-1263,共15页
Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative ex... Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative examination of polysomnographic recording.Sleep stage scoring is mainly based on experts’knowledge which is laborious and time consuming.Hence,it can be essential to design automated sleep stage classification model using machine learning(ML)and deep learning(DL)approaches.In this view,this study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage Classification(CMVODL-SSC)model using Electroencephalogram(EEG)signals.The proposed CMVODL-SSC model intends to effectively categorize different sleep stages on EEG signals.Primarily,data pre-processing is performed to convert the actual data into useful format.Besides,a cascaded long short term memory(CLSTM)model is employed to perform classification process.At last,the CMVO algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model.In order to report the enhancements of the CMVODL-SSC model,a wide range of simulations was carried out and the results ensured the better performance of the CMVODL-SSC model with average accuracy of 96.90%. 展开更多
关键词 Signal processing EEG signals sleep stage classification clstm model deep learning cmvo algorithm
下载PDF
Manta Ray Foraging Optimization with Machine Learning Based Biomedical Data Classification
5
作者 amal al-rasheed Jaber S.Alzahrani +5 位作者 Majdy M.Eltahir Abdullah Mohamed Anwer Mustafa Hilal Abdelwahed Motwakel Abu Sarwar Zamani Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2022年第11期3275-3290,共16页
The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intellig... The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intelligence(AI)and machine learning(ML)models assist in the effectual design of medical data classification models.Therefore,this article concentrates on the development of optimal Stacked Long Short Term Memory Sequence-toSequence Autoencoder(OSAE-LSTM)model for biomedical data classification.The presented OSAE-LSTM model intends to classify the biomedical data for the existence of diseases.Primarily,the OSAE-LSTM model involves min-max normalization based pre-processing to scale the data into uniform format.Followed by,the SAE-LSTM model is utilized for the detection and classification of diseases in biomedical data.At last,manta ray foraging optimization(MRFO)algorithm has been employed for hyperparameter optimization process.The utilization of MRFO algorithm assists in optimal selection of hypermeters involved in the SAE-LSTM model.The simulation analysis of the OSAE-LSTM model has been tested using a set of benchmark medical datasets and the results reported the improvements of the OSAELSTM model over the other approaches under several dimensions. 展开更多
关键词 Biomedical data classification deep learning manta ray foraging optimization healthcare machine learning artificial intelligence
下载PDF
Optimal Kernel Extreme Learning Machine for COVID-19 Classification on Epidemiology Dataset
6
作者 Saud S.Alotaibi amal al-rasheed +5 位作者 Sami Althahabi Manar Ahmed Hamza Abdullah Mohamed Abu Sarwar Zamani Abdelwahed Motwakel Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2022年第11期3305-3318,共14页
Artificial Intelligence(AI)encompasses various domains such as Machine Learning(ML),Deep Learning(DL),and other cognitive technologies which have been widely applied in healthcare sector.AI models are utilized in heal... Artificial Intelligence(AI)encompasses various domains such as Machine Learning(ML),Deep Learning(DL),and other cognitive technologies which have been widely applied in healthcare sector.AI models are utilized in healthcare sector in which the machines are used to investigate and make decisions based on prediction and classification of input data.With this motivation,the current study involves the design of Metaheuristic Optimization with Kernel Extreme Learning Machine for COVID-19 Prediction Model on Epidemiology Dataset,named MOKELM-CPED technique.The primary aim of the presented MOKELM-CPED model is to accomplish effectual COVID-19 classification outcomes using epidemiology dataset.In the proposed MOKELM-CPED model,the data first undergoes pre-processing to transform the medical data into useful format.Followed by,data classification process is performed by following Kernel Extreme Learning Machine(KELM)model.Finally,Symbiotic Organism Search(SOS)optimization algorithm is utilized to fine tune the KELM parameters which consequently helps in achieving high detection efficiency.In order to investigate the improved classifier outcomes of MOKELM-CPED model in an effectual manner,a comprehensive experimental analysis was conducted and the results were inspected under diverse aspects.The outcome of the experiments infer the enhanced performance of the proposed method over recent approaches under distinct measures. 展开更多
关键词 COVID-19 epidemiology dataset machine learning artificial intelligence metaheuristics healthcare
下载PDF
Deep Learning Based License Plate Number Recognition for Smart Cities
7
作者 T.Vetriselvi E.Laxmi Lydia +4 位作者 Sachi Nandan Mohanty Eatedal Alabdulkreem Shaha Al-Otaibi amal al-rasheed Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第1期2049-2064,共16页
Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enha... Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enhanced incident avoidance and management should be top priorities in smart city management.At the same time,Vehicle License Plate Number Recognition(VLPNR)has become a hot research topic,owing to several real-time applications like automated toll fee processing,traffic law enforcement,private space access control,and road traffic surveillance.Automated VLPNR is a computer vision-based technique which is employed in the recognition of automobiles based on vehicle number plates.The current research paper presents an effective Deep Learning(DL)-based VLPNR called DLVLPNR model to identify and recognize the alphanumeric characters present in license plate.The proposed model involves two main stages namely,license plate detection and Tesseract-based character recognition.The detection of alphanumeric characters present in license plate takes place with the help of fast RCNN with Inception V2 model.Then,the characters in the detected number plate are extracted using Tesseract Optical Character Recognition(OCR)model.The performance of DL-VLPNR model was tested in this paper using two benchmark databases,and the experimental outcome established the superior performance of the model compared to other methods. 展开更多
关键词 Deep learning smart city tesseract computer vision vehicle license plate recognition
下载PDF
MIoT Based Skin Cancer Detection Using Bregman Recurrent Deep Learning
8
作者 Nithya Rekha Sivakumar Sara Abdelwahab Ghorashi +2 位作者 Faten Khalid Karim Eatedal Alabdulkreem amal al-rasheed 《Computers, Materials & Continua》 SCIE EI 2022年第12期6253-6267,共15页
Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis... Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis and prediction.Among the various disease,skin cancer was the wide variety of cancer,as well as enhances the endurance rate.In recent years,many skin cancer classification systems using machine and deep learning models have been developed for classifying skin tumors,including malignant melanoma(MM)and other skin cancers.However,accurate cancer detection was not performed with minimum time consumption.In order to address these existing problems,a novel Multidimensional Bregman Divergencive Feature Scaling Based Cophenetic Piecewise Regression Recurrent Deep Learning Classification(MBDFS-CPRRDLC)technique is introduced for detecting cancer at an earlier stage.The MBDFS-CPRRDLC performs skin cancer detection using different layers such as input,hidden,and output for feature selection and classification.The patient information is composed of IoT.The patient information was stored in mobile clouds server for performing predictive analytics.The collected data are sent to the recurrent deep learning classifier.In the first hidden layer,the feature selection process is carried out using the Multidimensional Bregman Divergencive Feature Scaling technique to find the significant features for disease identification resulting in decreases time consumption.Followed by,the disease classification is carried out in the second hidden layer using cophenetic correlative piecewise regression for analyzing the testing and training data.This process is repeatedly performed until the error gets minimized.In this way,disease classification is accurately performed with higher accuracy.Experimental evaluation is carried out for factors namely Accuracy,precision,recall,F-measure,as well as cancer detection time,by the amount of patient data.The observed result confirms that the proposed MBDFS-CPRRDLC technique increases accuracy as well as lesser cancer detection time compared to the conventional approaches. 展开更多
关键词 MIoT skin cancer detection recurrent deep learning classification multidimensional bregman divergencive scaling cophenetic correlative piecewise regression
下载PDF
An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data
9
作者 Romany F.Mansour Shaha Al-Otaibi +3 位作者 amal al-rasheed Hanan Aljuaid Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2021年第9期2843-2858,共16页
Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directl... Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directly in these big data streams.At the same time,streaming data from several applications results in two major problems such as class imbalance and concept drift.The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection(MOMBD-CDD)method on High-Dimensional Streaming Data.The presented MOMBD-CDD model has different operational stages such as pre-processing,CDD,and classification.MOMBD-CDD model overcomes class imbalance problem by Synthetic Minority Over-sampling Technique(SMOTE).In order to determine the oversampling rates and neighboring point values of SMOTE,Glowworm Swarm Optimization(GSO)algorithm is employed.Besides,Statistical Test of Equal Proportions(STEPD),a CDD technique is also utilized.Finally,Bidirectional Long Short-Term Memory(Bi-LSTM)model is applied for classification.In order to improve classification performance and to compute the optimum parameters for Bi-LSTM model,GSO-based hyperparameter tuning process is carried out.The performance of the presented model was evaluated using high dimensional benchmark streaming datasets namely intrusion detection(NSL KDDCup)dataset and ECUE spam dataset.An extensive experimental validation process confirmed the effective outcome of MOMBD-CDD model.The proposed model attained high accuracy of 97.45%and 94.23%on the applied KDDCup99 Dataset and ECUE Spam datasets respectively. 展开更多
关键词 Streaming data concept drift classification model deep learning class imbalance data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部