In this article, we consider a new life test scheme called a progressively first-failure censoring scheme introduced by Wu and Kus [1]. Based on this type of censoring, the maximum likelihood, approximate maximum like...In this article, we consider a new life test scheme called a progressively first-failure censoring scheme introduced by Wu and Kus [1]. Based on this type of censoring, the maximum likelihood, approximate maximum likelihood and the least squares method estimators for the unknown parameters of the inverse Weibull distribution are derived. A comparison between these estimators is provided by using extensive simulation and two criteria, namely, absolute bias and mean squared error. It is concluded that the estimators based on the least squares method are superior compared to the maximum likelihood and the approximate maximum likelihood estimators. Real life data example is provided to illustrate our proposed estimators.展开更多
Currently, progressive censoring is intensively investigated by several researchers due to its ability to remove subjects from the experiment before the final termination point, thus saving time and cost. The closed f...Currently, progressive censoring is intensively investigated by several researchers due to its ability to remove subjects from the experiment before the final termination point, thus saving time and cost. The closed form of marginal density of failure times under progressive type II censoring is essential to study the properties of statistical analysis under different censoring schemes. In this paper, we provide a different presentation of the marginal distribution under progressive type-II censoring and we derive closed forms for different special cases. In order to study the similarity/dissimilarity of marginal densities of order statistics for failure times, the overlap measure is used. We discovered that the overlap measure depends only on the effective size m. A numerical example based on a real life data regarding failure times of aircrafts' windshields is provided to quantify the amount of redundant information provided by the order statistics of the failure times under different progressive type-II schemes based on the overlap measure. Moreover, this data set is used as a pilot study to estimate the effective size m needed for future studies.展开更多
文摘In this article, we consider a new life test scheme called a progressively first-failure censoring scheme introduced by Wu and Kus [1]. Based on this type of censoring, the maximum likelihood, approximate maximum likelihood and the least squares method estimators for the unknown parameters of the inverse Weibull distribution are derived. A comparison between these estimators is provided by using extensive simulation and two criteria, namely, absolute bias and mean squared error. It is concluded that the estimators based on the least squares method are superior compared to the maximum likelihood and the approximate maximum likelihood estimators. Real life data example is provided to illustrate our proposed estimators.
文摘Currently, progressive censoring is intensively investigated by several researchers due to its ability to remove subjects from the experiment before the final termination point, thus saving time and cost. The closed form of marginal density of failure times under progressive type II censoring is essential to study the properties of statistical analysis under different censoring schemes. In this paper, we provide a different presentation of the marginal distribution under progressive type-II censoring and we derive closed forms for different special cases. In order to study the similarity/dissimilarity of marginal densities of order statistics for failure times, the overlap measure is used. We discovered that the overlap measure depends only on the effective size m. A numerical example based on a real life data regarding failure times of aircrafts' windshields is provided to quantify the amount of redundant information provided by the order statistics of the failure times under different progressive type-II schemes based on the overlap measure. Moreover, this data set is used as a pilot study to estimate the effective size m needed for future studies.