期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The MET Analysis of Yield Performance of Advanced Sorghum [<i>Sorghum Bicolor</i>(L.) Moench] Lines under Moisture Stress Areas Using Spatial Analysis
1
作者 Kidanemaryam Wagaw amare Seyoum +3 位作者 Taye Tadesse Adane Gebreyohannes amare nega Diriba Tadesse 《American Journal of Plant Sciences》 2020年第10期1618-1631,共14页
Sorghum is one of the most widely cultivated cereal crops in Ethiopia which is grown for food and feed uses. It’s far an indigenous crop that’s grown in incredibly diverse environments of getting diverse water strai... Sorghum is one of the most widely cultivated cereal crops in Ethiopia which is grown for food and feed uses. It’s far an indigenous crop that’s grown in incredibly diverse environments of getting diverse water strain, soil fertility, and temperature situations. Trait of sorghum varieties tolerant to drought and producing desirable grain yield at the same time as addressing the biomass requirement is one of the techniques within the sorghum breeding program to the dry lowland surroundings so one can feed the growing population in Ethiopia. A total of 126 superior early maturing sorghum elite lines had been evaluated through along with recently released popular trendy check Melkam and Argiti to estimate the grain yield and stability of overall performance throughout the testing environments. Based on the overall performance of grain yield, flowering time, </span><span style="font-family:""><span style="font-family:Verdana;">plant height, and the stability of grain yield genotype ETSC14501-2-2 and</span><span style="font-family:Verdana;"> 14MWLSDT7196 become top ranked followed by genotype 14MWLSDT7176, 14MWLSDT7241 and 13MWF6#6037 which could be a capability candidate for production to the target environments. The varieties had better grain yield </span><span style="font-family:Verdana;">performance and stability across the environment, which may be used as capacity parental lines for genetic improvement in the sorghum improvement program. Finally based on the presented result on early maturing variety ETSC14501-2-2 with the pedigree of Redswazi/Meko-1 identified and registered for variety verification across locations on stations and on farms to confirm the stability and preference by farmers with their own farming practices. 展开更多
关键词 HERITABILITY Stability META Elite Lines Correlation Spatial Analysis
下载PDF
Distinguishing of Stable Genotypes and Mega Environment for Grain Yield Performance of Sorghum [<i>Sorghum bicolor</i>(L.) Moench] Genotypes Using Spatial Analysis
2
作者 Kidanemaryam Wagaw amare Seyoum +7 位作者 Taye Tadesse amare nega Adane Gebreyohannes Tamirat Bejiga Sewmehon Siraw Hailemariam Solomon Daniel Nadew Meron Bogale 《American Journal of Plant Sciences》 2021年第3期417-431,共15页
Sorghum is a staple food crop in Ethiopia and its production is mainly constrained by drought, other environmental factors, and the use of low-yielding, local sorghum varieties. To improve sorghum productivity, it is ... Sorghum is a staple food crop in Ethiopia and its production is mainly constrained by drought, other environmental factors, and the use of low-yielding, local sorghum varieties. To improve sorghum productivity, it is crucial to provide farmers with high yielding, stable sorghum cultivars that are tolerant to drought and other constraints. The stable performance of sorghum varieties in a growing region is critical to obtain a high and stable yield. In the 2012-2014 crop year, 24 genotypes, including standard controls, were evaluated at the national variety trial stage over six main dry lowland sorghum growing sites and two years made 7 environments to evaluate their performance, stability and to quantify Genotype by Environment Interaction (GEI) across moisture stress sorghum growing areas of Ethiopia. Spatial modeling has been used to estimate predicted mean (BLUPs) results and Performance and estimation of environmental correlation, heritability, GEI, and other parameters using the ASReml3-R analysis package. The predicted mean yield of the test genotypes across the environment ranged from 3.45 to 1.56 t<span style="font-family:Verdana;">·</span><span style="font-family:;" "=""><span style="font-family:Verdana;">ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. Based on the result genotype G13, it could be further promoted because of its yield advantage and other important attributes over the standard checks, but it is the least stable. Based on the analyzed result, two mega environments were formed and Environment 1 (E1) is identified as an ideal environment among the testing environments.</span></span> 展开更多
关键词 Genetic Correlation Mega Environment Stability Spatial Analysis
下载PDF
Multi-Environment Evaluation and Genotype ×Environment Interaction Analysis of Sorghum [<i>Sorghum bicolor</i>(L.) Moench] Genotypes in Highland Areas of Ethiopia
3
作者 amare Seyoum Zigale Semahegn +12 位作者 amare nega Sewmehone Siraw Adane Gebereyhones Hailemariam Solomon Tokuma Legesse Kidanemaryam Wagaw Temesgene Terresa Solomon Mitiku Yirgalem Tsehaye Moges Mokonen Wakjira Chifra Habte Nida Alemu Tirfessa 《American Journal of Plant Sciences》 2020年第12期1899-1917,共19页
Sorghum [<i><span style="font-family:Verdana;">Sorghum bicolor</span></i><span style="font-family:Verdana;"> (L.) Moench] is a high-yielding, nutrient-use efficient, a... Sorghum [<i><span style="font-family:Verdana;">Sorghum bicolor</span></i><span style="font-family:Verdana;"> (L.) Moench] is a high-yielding, nutrient-use efficient, and drought tolerant crop that can be cultivated on over 80 per cent of the world’s agricultural land. However, a number of biotic and abiotic factors are limiting grain yield increase. Diseases (leaf and grain) are considered as one of the major biotic factors hindering sorghum productivity in the highland and intermediate altitude sorghum growing areas of Ethiopia. In addition, the yield performance of crop varieties is highly influenced by genotype × environment (G × E) interaction which is the major focus of researchers while generating improved varieties. In Ethiopia, high yielding and stable varieties that withstand biotic stress in the highland areas are limited. In line with this, the yield performance of 21 sorghum genotypes and one standard check were evaluated across 14 environments with the objectives of estimating magnitude G </span><span style="font-family:Verdana;">× E interaction for grain yield and to identify high yielder and stable genotypes across environments. The experiment was laid out using Randomized Complete Block Design with three replications in all environments. The combined analysis of variance across environments revealed highly significant differences among environments, genotypes and G × E interactions of grain yield suggesting further analysis of the G × E interaction. The results of the combined AMMI analysis of variance indicated that the total variation in grain yield was attributed to environments effects 71.21%, genotypes effects 4.52% and G × E interactions effects 24.27% indicating the major sources of variation. Genotypes 2006AN7010 and 2006AN7011 were high yielder and they were stable across environments and one variety has been released for commercial production and can be used as parental lines for genetic improvement in the sorghum improvement program. In general, this research study revealed the importance of evaluating sorghum genotypes for their yield and stability across diverse highland areas of Ethiopia before releasing for commercial production.</span> 展开更多
关键词 G × E Interaction Additive Main Effect and Multiplicative Interaction (AMMI) Genotype and Genotype by Environment (GGE) Genotypes & Stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部