期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microstructure and Quasi-Static Mechanical Behavior of Cryoforged AA2519 Alloy 被引量:1
1
作者 amin azimi Gbadebo Moses Owolabi +2 位作者 Hamid Fallahdoost Nikhil Kumar Horace Whitworth 《Materials Sciences and Applications》 2019年第2期137-149,共13页
In this study, AA2519 alloy was initially processed by multi axial forging (MAF) at room and cryogenic temperatures. Subsequently, the microstructure and the mechanical behavior of the processed samples under quasi-st... In this study, AA2519 alloy was initially processed by multi axial forging (MAF) at room and cryogenic temperatures. Subsequently, the microstructure and the mechanical behavior of the processed samples under quasi-static loading were investigated to determine the influence of cryogenic forging on alloys’ subgrains dimensions, grain boundaries interactions, strength, ductility and toughness. In addition, the failure mechanisms at the tensile rupture surfaces were characterized using scanning electron micro-scope (SEM). The results show significant improvements in the strength, ductility and toughness of the alloy as a result of the cryogenic MAF process. The formation of nanoscale crystallite microstructure, heavily deformed grains with high density of grain boundaries and second phase breakage to finer particles were characterized as the main reasons for the increase in the mechanical properties of the cryogenic forged samples. The cryogenic processing of the alloy resulted in the formation of an ultrafine grained material with tensile strength and toughness that are ~41% and ~80% higher respectively after 2 cycles MAF when compared with the materials processed at ambient temperature. The fractography analysis on the tested materials shows a substantial ductility improvement in the cryoforged (CF) samples when compared to the room temperature forged (RTF) samples which is in alignment with their stress-strain profiles. However, extended forging at higher cycles than 2 cycles led only to increase in strength at the expense of ductility for both the CF and RTF samples. 展开更多
关键词 AA2519 Aluminum ALLOY CRYOGENIC FORGING QUASI-STATIC Mechanical Behavior MICROSTRUCTURE Investigation FRACTOGRAPHY Analysis
下载PDF
The Effects of Build Parameters and Strain Rate on the Mechanical Properties of FDM 3D-Printed Acrylonitrile Butadiene Styrene 被引量:1
2
作者 Kemar Hibbert Grant Warner +3 位作者 Celeste Brown Olusegun Ajide Gbadebo Owolabi amin azimi 《Open Journal of Organic Polymer Materials》 2019年第1期1-27,共27页
In this paper, the effects of build parameters on the mechanical properties of 3D-printed acrylonitrile butadiene styrene (ABS) produced using fused deposition modeling (FDM) are investigated. Full factorial experimen... In this paper, the effects of build parameters on the mechanical properties of 3D-printed acrylonitrile butadiene styrene (ABS) produced using fused deposition modeling (FDM) are investigated. Full factorial experimental design incorporating a 2-level, 3-factor design with raster angle, layer thickness and interior fill style was carried out. Tensile tests were performed at four different strain rates to determine how the build parameters influence the mechanical properties of the 3-D printed ABS and to assess its strain rate sensitivity under quasi-static loading. It was found that the modulus of toughness of ABS material is most influenced by raster angle, while the interior fill style is the most dominant build parameter that dictates the specimen’s modulus of resilience, yield strength and ultimate tensile strength. At all strain rates, it is further revealed that higher mean values of yield strength, ultimate tensile strength and modulus of resilience were obtained when the interior fill style is solid as opposed to high density. This can be attributed to the denser structure and higher effective cross-sectional area in solid interior fill style in comparison with high density interior fill style. However, the influence of the layer thickness on the investigated mechanical properties was found to be inconsistent. It was noted that specimens built with both 0.254 mm layer thickness and the cross [0°/90°] raster angle had superior mechanical properties when compared to those built with the 0.3302 mm layer thickness and cross [0°/90°] raster angle. This suggests that there is a key interaction between the layer thickness and the raster angle. At any FDM build parameter, it was found that all the mechanical properties investigated in this work exhibited modest sensitivity to strain rates. This study has provided a platform for an appropriate selection of build parameters combinations and strain rates for additive manufacturing of 3D-printed ABS with improved mechanical properties. 展开更多
关键词 BUILD PARAMETERS MECHANICAL Properties Additive Manufacturing 3D Printing ACRYLONITRILE BUTADIENE STYRENE
下载PDF
Taguchi统计学分析方法优化Al 7068-TiC纳米复合材料的凝固行为(英文)
3
作者 amin azimi Ali SHOKUHFAR +2 位作者 Omid NEJADSEYFI Hamid FALLAHDOOST Saeid SALEHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2499-2508,共10页
采用机械合金化和热压工艺制备高强Al 7068-5%Ti C(质量分数)纳米复合材料。基于致密化的重要性和晶粒生长的影响,以获得较高抗压强度为目标,采用Taguchi统计法对制备Al 7068-5%Ti C块体纳米复合材料的热压条件进行优化。结果表明:在500... 采用机械合金化和热压工艺制备高强Al 7068-5%Ti C(质量分数)纳米复合材料。基于致密化的重要性和晶粒生长的影响,以获得较高抗压强度为目标,采用Taguchi统计法对制备Al 7068-5%Ti C块体纳米复合材料的热压条件进行优化。结果表明:在500 MPa和385°C下热压30 min能获得抗压强度为938 MPa、硬度为HV 265的Al 7068-TiC纳米复合材料。此外,方差分析结果表明,外加压力是影响纳米复合材料热压过程最关键的因素。各因素对纳米复合材料热压过程影响贡献率为外加压力(61.3%)、热压温度(29.53%)和热压时间(4.49%)。 展开更多
关键词 AL 7068-Ti C纳米复合材料 热压处理 机械合金化 Taguchi法 力学性能
下载PDF
Fatigue Responses of Three AA 2000 Series Aluminum Alloys
4
作者 Gbadebo Moses Owolabi Mark Thom +4 位作者 Olusegun Ajide Nikhil Kumar amin azimi Horace Whitworth Grant Warner 《Journal of Materials Science and Chemical Engineering》 2019年第3期32-48,共17页
In this paper, smooth specimens of three aluminum alloys: AA 2219-T8, AA 2519-T8 and AA 2624-T351, were subjected to the same level of uniaxial (tension/compression) fatigue loading to compare their fatigue responses.... In this paper, smooth specimens of three aluminum alloys: AA 2219-T8, AA 2519-T8 and AA 2624-T351, were subjected to the same level of uniaxial (tension/compression) fatigue loading to compare their fatigue responses. Fractographic investigations of the failed specimens after fatigue loading was also conducted using a scanning electron microscope. The fatigue test results showed considerable differences in the fatigue lives of the three investigated alloys with AA 2219-T8 having the shortest fatigue life and AA 2624-T351 the longest fatigue life. The fractographic analysis showed that coalescence of micropores, microvoids, particles cleavage and microcracks are the predominant features in the fracture surface of AA 2219-T8. The fracture surface features of AA 2519-T8 revealed higher resistance to fatigue cracks nucleation and growth when compared to AA 2219-T8. The features depicted mainly partly ductile and partly brittle fracture. The AA 2624-T351 fracture surface features revealed noteworthy ductile failure mechanism. The results suggest a strong correlation between the surface fractographic features and the fatigue lives of the alloys. It is also observed that in addition to the yield strengths and ultimate tensile strengths, the total strain energy densities (SED) may provide a reasonable indication of the relative fatigue performance of the three alloys. AA 2219-T8 had the lowest SED and the lowest fatigue life, while AA 2624-T351 had the highest SED and the highest fatigue life. Thus, AA 2624-T351 would be the most suitable materials for components subjected to fatigue loading. 展开更多
关键词 FATIGUE Life ALUMINUM Alloy Strain Energy Density FRACTOGRAPHY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部