We propose a novel analytical model to describe the drain-source current as well as gate-source of single-electron transistors (SETs) at high temperature. Our model consists on summing the tunnel current and thermioni...We propose a novel analytical model to describe the drain-source current as well as gate-source of single-electron transistors (SETs) at high temperature. Our model consists on summing the tunnel current and thermionic contribution. This model will be compared with another model.展开更多
Multi Tunnel Junctions (MTJs) have attracted much attention recently in the fields of Single-Electron Transistor (SET) and Single-Electron Memory (SEM). In this paper, we investigate a nano-device structure using a tw...Multi Tunnel Junctions (MTJs) have attracted much attention recently in the fields of Single-Electron Transistor (SET) and Single-Electron Memory (SEM). In this paper, we investigate a nano-device structure using a two one dimensional array MTJs connected to the basic Single Electron Circuits, in order to analyze the impact of physical parameters on the performances and application of this structure. The device generates can operate at room temperature. The simulation of single-electron circuit demonstrates with Monte Carlo simulator, SIMON.展开更多
文摘We propose a novel analytical model to describe the drain-source current as well as gate-source of single-electron transistors (SETs) at high temperature. Our model consists on summing the tunnel current and thermionic contribution. This model will be compared with another model.
文摘Multi Tunnel Junctions (MTJs) have attracted much attention recently in the fields of Single-Electron Transistor (SET) and Single-Electron Memory (SEM). In this paper, we investigate a nano-device structure using a two one dimensional array MTJs connected to the basic Single Electron Circuits, in order to analyze the impact of physical parameters on the performances and application of this structure. The device generates can operate at room temperature. The simulation of single-electron circuit demonstrates with Monte Carlo simulator, SIMON.