期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of graphene oxide on the corrosion,mechanical and biological properties of Mg-based nanocomposite 被引量:2
1
作者 Saeid Jabbarzare Hamid Reza Bakhsheshi-Rad +2 位作者 amir abbas nourbakhsh Tahmineh Ahmadi Filippo Berto 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期305-319,共15页
This study investigates the effect of graphene oxide(GO)on the mechanical and corrosion behavior,antibacterial performance,and cell response of Mg–Zn–Mn(MZM)nanocomposite.MZM/GO nanocomposites with different amounts... This study investigates the effect of graphene oxide(GO)on the mechanical and corrosion behavior,antibacterial performance,and cell response of Mg–Zn–Mn(MZM)nanocomposite.MZM/GO nanocomposites with different amounts of GO(i.e.,0.5 wt%,1.0 wt%,and1.5 wt%)were fabricated by the semi-powder metallurgy method.The influence of GO on the MZM nanocomposite was analyzed through the hardness,compressive,corrosion,antibacterial,and cytotoxicity tests.The experimental results showed that,with the increase in the amount of GO(0.5 wt%and 1.5 wt%),the hardness value,compressive strength,and antibacterial performance of the MZM nanocomposite increased,whereas the cell viability and osteogenesis level decreased after the addition of 1.5 wt%GO.Moreover,the electrochemical examination results showed that the corrosion behavior of the MZM alloy was significantly enhanced after encapsulation in 0.5 wt%GO.In summary,MZM nanocomposites reinforced with GO can be used for implant applications because of their antibacterial performance and mechanical property. 展开更多
关键词 magnesium-based nanocomposite graphene oxide powder metallurgy method mechanical property antibacterial activity BIOCOMPATIBILITY
下载PDF
Low-temperature Magnesiothermic Synthesis of Mesoporous Silicon Carbide from an MCM-48/Polyacrylamide Nanocomposite Precursor 被引量:3
2
作者 Zahra Saeedifar amir abbas nourbakhsh +1 位作者 Roozbeh Javad Kalbasi Ebrahim Karamian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第3期255-260,共6页
Mesoporous silicon carbide with high specific surface area was successfully synthesized from an MCM-48/ polyacrylamide nanocomposite precursor in the temperature range of 550-600 ℃ (below the melting point of Mg) b... Mesoporous silicon carbide with high specific surface area was successfully synthesized from an MCM-48/ polyacrylamide nanocomposite precursor in the temperature range of 550-600 ℃ (below the melting point of Mg) by means of a magnesiothermic reduction process. The MCM-48/polyacrylamide precursor nanocomposite was prepared by in-situ polymerization of acrylamide monomer in the presence of mesoporous MCM-48 synthesized by sol-gel method. The physicochemical properties and microstructures of the nanocomposite precursor and the low-temperature SiC product were characterized by X-ray diffraction (XRD), differential scanning calorimetry-thermo gravimetric analysis (DSC-TGA), transmission electron microscopy (TEM) and N2 adsorption-desorption. TEM micrographs and Brunauer-Emmett-Teller (BET) gas adsorption studies showed that the SiC powder was nanocrystalline and had a specific surface area of 330 m2/g and a mesoporosity in the range of 2-10 nm. The presence of an exothermic peak in the DSC trace corresponds to the self-combustion process of the SiC magnesiothermic synthesis. The results also show that the carbon in excess to that required to produce SiC plays a role in the reduction of the SiO2. The mechanism of magnesiothermic synthesis of mesoporous SiC is discussed. 展开更多
关键词 Silicon carbide NANOCOMPOSITE MESOPOROUS Magnesiothermic reduction In-situ polymerization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部