期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study of hydrogen sulfide hydrate formation: Induction time in the presence and absence of kinetic inhibitor 被引量:4
1
作者 Yousef Salamat Abdolreza Moghadassi +2 位作者 Mohammad Illbeigi Ali Eslamimanesh amir h. mohammadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期114-118,共5页
In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is ... In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is studied. A novel method namely "sudden cooling" is used for performing the relevant measurements, in which the induction time of H2S hydrate in the presence/absence of PVP and L-tyrosine with different concentrations (100, 500, and 1000 ppm) is determined. As a result, PVP with the concentration of 1000 ppm in aqueous solution is detected as a more suitable material for increasing the induction time of H2S hydrate formation among the investigated kinetic hydrate inhibitors. 展开更多
关键词 hy^ogen sulfide gas hydrates clathrate hydrates kinetic inhibitor induction time sudden cooling
下载PDF
Kinetic study of methane hydrate formation in the presence of carbon nanostructures 被引量:2
2
作者 Saeid Abedi-Farizhendi Mina Iranshahi +2 位作者 Abolfazl mohammadi Mehrdad Manteghian amir h. mohammadi 《Petroleum Science》 SCIE CAS CSCD 2019年第3期657-668,共12页
The effect of synthesized nanostructures,including graphene oxide,chemically reduced graphene oxide with sodium dodecyl sulfate(SDS),chemically reduced graphene oxide with polyvinylpyrrolidone,and multi-walled carbon ... The effect of synthesized nanostructures,including graphene oxide,chemically reduced graphene oxide with sodium dodecyl sulfate(SDS),chemically reduced graphene oxide with polyvinylpyrrolidone,and multi-walled carbon nanotubes,on the kinetics of methane hydrate formation was investigated in this work.The experiments were carried out at a pressure of 4.5 MPa and a temperature of 0 ℃ in a batch reactor.By adding nanostructures,the induction time decreases,and the shortest induction time appeares at certain concentrations of reduced graphene oxide with SDS and graphene oxide,that is,at a concentration of 360 ppm for reduced graphene oxide with SDS and 180 ppm for graphene oxide,with a 98% decrease in induction time compared to that in pure water.Moreover,utilization of carbon nanostructures increases the amount and the rate of methane consumed during the hydrate formation process.Utilization of multi-walled carbon nanotubes with a concentration of 90 ppm showes the highest amount of methane consumption.The amount of methane consumption increases by 173% in comparison with that in pure water.The addition of carbon nanostructures does not change the storage capacity of methane hydrate in the hydrate formation process,while the percentage of water conversion to hydrate in the presence of carbon nanotubes increases considerably,the greatest value of which occurres at a 90 ppm concentration of carbon nanotubes,that is,a 253% increase in the presence of carbon nanotubes compared to that of pure water. 展开更多
关键词 CLATHRATE HYDRATE Kinetics Carbon NANOSTRUCTURES Graphene OXIDE SDS PVP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部