A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular,...A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.展开更多
文摘A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.