期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Characterization of Sequentially Cohen-Macaulay Matroidal Ideals
1
作者 Payman Mahmood Hamaali amir mafi Hero Saremi 《Algebra Colloquium》 SCIE CSCD 2023年第2期237-244,共8页
Let R=K[x1,…,xn]be the polynomial ring in n variables over a field K and I be a matroidal ideal of R.We show that I is sequentially Cohen-Macaulay if and only if the Alexander dual Iy has linear quotients.As a conseq... Let R=K[x1,…,xn]be the polynomial ring in n variables over a field K and I be a matroidal ideal of R.We show that I is sequentially Cohen-Macaulay if and only if the Alexander dual Iy has linear quotients.As a consequence,I is sequentially Cohen-Macaulay if and only if I is shellable. 展开更多
关键词 sequentially Cohen-Macaulay monomial ideals matroidal ideals
原文传递
Reduction of Ideals Relative to an Artinian Module and the Dual of Burch,s Inequality
2
作者 Fatemeh Cheraghi amir mafi 《Algebra Colloquium》 SCIE CSCD 2019年第1期113-122,共10页
Let (A,m) be a commutative quasi-local ring with non-zero identity and M be an Artinian A-module with dim M = d. If I is an ideal of A with l(0 :m I)<∞, then we show that for a minimal reduction J of I,(0 : m JI)=... Let (A,m) be a commutative quasi-local ring with non-zero identity and M be an Artinian A-module with dim M = d. If I is an ideal of A with l(0 :m I)<∞, then we show that for a minimal reduction J of I,(0 : m JI)=(0 :m I^2) if and only if l(0:M I^n+1)=l(0:m J)^(n+d/d)-l(0 :M J)/(0 :M I))(n+d-1/d-1) for all n≥> 0. Moreover, we study the dual of Burch's inequality. In particular, the Burch's inequality becomes an equality if G(I,M) is co-Cohen-Macaulay. 展开更多
关键词 REDUCTION of IDEALS ARTINIAN MODULES co-Cohen-Macaulay
原文传递
Some Criteria for the Cohen-Macaulay Property and Local Cohomology
3
作者 amir mafi 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第6期917-922,共6页
Let a be an ideal of a commutative Noetherian ring R and M be a finitely generated R-module of dimension d. We characterize Cohen-Macaulay rings in term of a special homological dimension. Lastly, we prove that if R i... Let a be an ideal of a commutative Noetherian ring R and M be a finitely generated R-module of dimension d. We characterize Cohen-Macaulay rings in term of a special homological dimension. Lastly, we prove that if R is a complete local ring, then the Matlis dual of top local cohomology module Ha^d(M) is a Cohen-Macaulay R-module provided that the R-module M satisfies some conditions. 展开更多
关键词 COHEN-MACAULAY Gorenstein flat module local cohomology module
原文传递
Property of Almost Cohen-Macaulay over Extension Modules
4
作者 Samaneh Tabejamaat amir mafi Khadijeh Ahmadi Amoli 《Algebra Colloquium》 SCIE CSCD 2017年第3期509-518,共10页
Let (R, m) be a Cohen-Macaulay local ring of dimension d, C a canonical R-module and M an almost Cohen-Macaulay R-module of dimension n and of depth t. We prove that dim Extd-n R(M,C) = n and if n ≤ 3 then Extd-n... Let (R, m) be a Cohen-Macaulay local ring of dimension d, C a canonical R-module and M an almost Cohen-Macaulay R-module of dimension n and of depth t. We prove that dim Extd-n R(M,C) = n and if n ≤ 3 then Extd-n(M,C) is an almost Cohen-Macaulay R-module. In particular, if n = d ≤ 3 then HomR(M, C) is an almost Cohen-Macaulay R-module. In addition, with some conditions, we show that Ext1R(M, C) is also almost Cohen-Macaulay. Finally, we study the vanishing Ext2R (Extd-n (M, C), C) and Ext2R (Extd-n(M, C), C). 展开更多
关键词 almost Cohen-Macaulay module Ext functor finiteness dimension
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部