Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death i...Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors. Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.展开更多
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenit...The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.展开更多
Dynamic recrystallization and precipitation in a high manganese austenitic stainless steel were investigated by hot compression tests over temperatures of 950-1150~C at strain rates of 0.001 s-1-1 s-1. All the flow cu...Dynamic recrystallization and precipitation in a high manganese austenitic stainless steel were investigated by hot compression tests over temperatures of 950-1150~C at strain rates of 0.001 s-1-1 s-1. All the flow curves within the studied deformation regimes were typ- ical of dynamic recrystallization. A window was constructed to determine the value of apparent activation energy as a function of strain rate and deformation temperature. The kinetics of dynamic recrystallization was analyzed using the Avrami kinetics equation. A range of apparent activation energy for hot deformation from 303 kJ/mol to 477 kJ/mol is obtained at different deformation regimes. Microscopic characterization confirms that under a certain deformation condition (medium Zener-Hollomon parameter (Z) values), dynamic recrystalliza- tion appears at first, but large particles can not inhibit the recrystallization. At low or high Z values, dynamic recrystallization may occur be- fore dynamic precipitation and proceeds faster. In both cases, secondary phase precipitation is observed along prior austenite grain bounda- ries. Stress relaxation tests at the same deformation temperatures also confirm the possibility of dynamic precipitation. Unexpectedly, the Avrami's exponent value increases with the increase of Z value. It is associated with the priority of dynamic recrystallization to dynamic precipitation at higher Z values.展开更多
Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 ℃ to 1200 ℃ and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening durin...Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 ℃ to 1200 ℃ and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening during hot compression. The flow behavior was successfully analyzed by the hyperbolic sine equation and the corresponding material constants A, n and αwere determined. The value of apparent activation energy was determined as 423 kJ/mol. The peak and steady state strains showed simple power-law dependence on the Zener-Hollomon parameter. The dynamic recrystallization kinetics was analyzed using Avrami equation and the corresponding exponent was determined to be about 2.7. This value, higher than 2 reported in the literatures, is associated with the mechanism of continuous dynamic recrystallization in the studied alloy. The flow curve up to the peak was modeled by the Cingara equation and the strain exponent, c, was determined about 0.85. The higher value of c compared with the value of 0.2 which has been reported for some stainless steels fortified the idea of extended dynamic recovery or continuous dynamic recrystallization in the studied alloy.展开更多
Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based tr...Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.展开更多
Microstructures and corrosion of TiNbTaZrMo(Ti_(20)Nb_(20)Ta_(20)Zr_(20)Mo_(20))High-Entropy Alloy(HEA)were investigated in the Simu-lated Body Fluid(SBF).Microstructure of this alloy was investigated by X-Ray Difirac...Microstructures and corrosion of TiNbTaZrMo(Ti_(20)Nb_(20)Ta_(20)Zr_(20)Mo_(20))High-Entropy Alloy(HEA)were investigated in the Simu-lated Body Fluid(SBF).Microstructure of this alloy was investigated by X-Ray Difiraction(XRD)and Scanning Electron Microscopy(SEM)techniques.Our observations confirmed the presence of two bcc phases as the major matrix as well as another minor phase in themicrostructure of the alloy.Concentration of some elements,such as tantalum,niobium,and molybdenum in the dendritic branches and thepresence of zirconium and titanium in the inter-dendritic branches were clearly evidenced by Energy Dispersive X-ray(EDX)analysis.Given importance of corrosion of implant alloys in the human's body,elctrochemical impedance and cyclic polarization tests werepcerformed on the alloy in SBF.Through the corrosion tests,corrosion potential,current,and resistance were obtained as E_(corr)=-0.42 V,i_(corr)=0.34μA·cm^(-2),and R_(p)=27.44 k ohm·cm^(2),respectively.The results revealed that the rate of corrosion in TiNbTaZrMo HEA is about 26 times better than that of Ti_(6)Al_(4)V alloy.Also,both alloys had no pitting corrosion in the SBF solution.展开更多
文摘Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors. Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.
文摘The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.
基金the financial support from Hamedan University of Technology(No.16.91.294)
文摘Dynamic recrystallization and precipitation in a high manganese austenitic stainless steel were investigated by hot compression tests over temperatures of 950-1150~C at strain rates of 0.001 s-1-1 s-1. All the flow curves within the studied deformation regimes were typ- ical of dynamic recrystallization. A window was constructed to determine the value of apparent activation energy as a function of strain rate and deformation temperature. The kinetics of dynamic recrystallization was analyzed using the Avrami kinetics equation. A range of apparent activation energy for hot deformation from 303 kJ/mol to 477 kJ/mol is obtained at different deformation regimes. Microscopic characterization confirms that under a certain deformation condition (medium Zener-Hollomon parameter (Z) values), dynamic recrystalliza- tion appears at first, but large particles can not inhibit the recrystallization. At low or high Z values, dynamic recrystallization may occur be- fore dynamic precipitation and proceeds faster. In both cases, secondary phase precipitation is observed along prior austenite grain bounda- ries. Stress relaxation tests at the same deformation temperatures also confirm the possibility of dynamic precipitation. Unexpectedly, the Avrami's exponent value increases with the increase of Z value. It is associated with the priority of dynamic recrystallization to dynamic precipitation at higher Z values.
文摘Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 ℃ to 1200 ℃ and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening during hot compression. The flow behavior was successfully analyzed by the hyperbolic sine equation and the corresponding material constants A, n and αwere determined. The value of apparent activation energy was determined as 423 kJ/mol. The peak and steady state strains showed simple power-law dependence on the Zener-Hollomon parameter. The dynamic recrystallization kinetics was analyzed using Avrami equation and the corresponding exponent was determined to be about 2.7. This value, higher than 2 reported in the literatures, is associated with the mechanism of continuous dynamic recrystallization in the studied alloy. The flow curve up to the peak was modeled by the Cingara equation and the strain exponent, c, was determined about 0.85. The higher value of c compared with the value of 0.2 which has been reported for some stainless steels fortified the idea of extended dynamic recovery or continuous dynamic recrystallization in the studied alloy.
文摘Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.
文摘Microstructures and corrosion of TiNbTaZrMo(Ti_(20)Nb_(20)Ta_(20)Zr_(20)Mo_(20))High-Entropy Alloy(HEA)were investigated in the Simu-lated Body Fluid(SBF).Microstructure of this alloy was investigated by X-Ray Difiraction(XRD)and Scanning Electron Microscopy(SEM)techniques.Our observations confirmed the presence of two bcc phases as the major matrix as well as another minor phase in themicrostructure of the alloy.Concentration of some elements,such as tantalum,niobium,and molybdenum in the dendritic branches and thepresence of zirconium and titanium in the inter-dendritic branches were clearly evidenced by Energy Dispersive X-ray(EDX)analysis.Given importance of corrosion of implant alloys in the human's body,elctrochemical impedance and cyclic polarization tests werepcerformed on the alloy in SBF.Through the corrosion tests,corrosion potential,current,and resistance were obtained as E_(corr)=-0.42 V,i_(corr)=0.34μA·cm^(-2),and R_(p)=27.44 k ohm·cm^(2),respectively.The results revealed that the rate of corrosion in TiNbTaZrMo HEA is about 26 times better than that of Ti_(6)Al_(4)V alloy.Also,both alloys had no pitting corrosion in the SBF solution.