期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非稳态纳米流体在加磁场平行板间流动的传热分析
1
作者 amirali shateri Mojgan Mansouri MOGHADDAM +3 位作者 Bahram JALILI Yasir KHAN Payam JALILI Davood Domiri GANJI 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第7期2313-2323,共11页
本研究采用微分变换法和Akbari-Ganji法,研究了施加均匀磁场对纳米流体在两个无限平行板间流动的自然对流传热的影响。在得到控制方程并在特定边界条件下求解问题后,研究了Prandtl数、挤压次数、Schmidt数、Hartmann数、Eckert数、布朗... 本研究采用微分变换法和Akbari-Ganji法,研究了施加均匀磁场对纳米流体在两个无限平行板间流动的自然对流传热的影响。在得到控制方程并在特定边界条件下求解问题后,研究了Prandtl数、挤压次数、Schmidt数、Hartmann数、Eckert数、布朗运动参数和热电泳参数等主要参数的影响。将相似变换用于求解常微分方程组,并与Rung-Kutta四阶数值法进行对比。研究结果表明,增加挤压次数会导致速度减慢,增加Hartman数也有类似的影响。此外,温度随着Hartman数、Eckert数和热电泳参数的增大而升高,且与Prandtl数成正比。我们对比研究了Akbari-Ganji法和微分变换法求解非线性微分方程,结果表明,前者需要的计算步骤更少和计算时间更短,是一种更有效的方法。使用建议的方法获得的解与文献中的解一致。这些结果有助于研究人员更快、更容易地进行分析,并为纳米流体在电磁场存在下流动的复杂行为提供重要见解。 展开更多
关键词 Akbari-Ganji法 微分变换法 传热输 热电泳
下载PDF
Utilizing Artificial intelligence to identify an Optimal Machine learning model for predicting fuel consumption in Diesel engines 被引量:1
2
作者 amirali shateri Zhiyin Yang Jianfei Xie 《Energy and AI》 EI 2024年第2期289-305,共17页
This paper describes the utilization of artificial intelligence (AI) techniques to identify an optimal machine learning (ML) model for predicting dodecane fuel consumption in diesel combustion. The study incorporates ... This paper describes the utilization of artificial intelligence (AI) techniques to identify an optimal machine learning (ML) model for predicting dodecane fuel consumption in diesel combustion. The study incorporates sensitivity analysis to assess the impact levels of various parameters on fuel consumption, thereby highlighting the most influential factors. In addition, this study addresses the impact of noise and implements data cleaning techniques to ensure the reliability of the obtained results. To validate the accuracy of the predictions, the study performs several metrics and validation process, including comparisons with computational fluid dynamics (CFD) results and experimental data. Comprehensive comparisons are made among neural networks (NN), random forest regression (RFR), and Gaussian process regression (GPR) models, taking into account the complexity associated with fuel consumption predictions. The findings demonstrate that the GPR model outperforms the others in terms of accuracy, as evidenced by metrics such as mean absolute error (MAE), mean squared error (MSE), Pearson coefficient (PC), and R-squared (R2). The GPR model exhibits superior predictive ability, accurately detecting and predicting even individual data points that deviate from the overall trend. The significantly lower absolute error values also consistently indicate its higher accuracy compared with the NN and RFR models. Furthermore, the GPR model shows a remarkable speedup, approximately 1.7 times faster than traditional CFD solvers, and physically captures the momentum and thermal characteristics in a surface field prediction. Finally, the target optimization is assessed using the Euclidean distance as a fitness function, ensuring the reliability of predicted data. 展开更多
关键词 AI evaluation Machine learning Diesel engine Fuel consumption Decarbonization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部