This article is devoted to a newly introduced numerical method for time-fractional dispersive partial differential equation in a multidimensional space.The time-fractional dispersive partial differential equation play...This article is devoted to a newly introduced numerical method for time-fractional dispersive partial differential equation in a multidimensional space.The time-fractional dispersive partial differential equation plays a great role in solving the problems arising in ocean science and engineering.The numerical technique comprises of Sumudu transform,homotopy perturbation scheme and He’s polynomial,namely homotopy perturbation Sumudu transform method(HPSTM)is efficiently used to examine time-fractional dispersive partial differential equation of third order in multi-dimensional space.The approximate analytic solution of the time-fractional dispersive partial differential equation of third-order in multi-dimensional space obtained by HPSTM is compared with exact solution as well as the solution obtained by using Adomain decomposition method.The results derived with the aid of two techniques are in a good agreement and consequently these techniques may be considered as an alternative and efficient approach for solving fractional partial differential equations.Several test problems are experimented to confirm the accuracy and efficiency of the proposed methods.展开更多
The study of dynamic behaviour of nonlinear models that arise in ocean engineering play a vital role in our daily life.There are many examples of ocean water waves which are nonlinear in nature.In shallow water,the li...The study of dynamic behaviour of nonlinear models that arise in ocean engineering play a vital role in our daily life.There are many examples of ocean water waves which are nonlinear in nature.In shallow water,the linearization of the equations imposes severe conditions on wave amplitude than it does in deep water,and the strong nonlinear effects are observed.In this paper,q-homotopy analysis Laplace transform scheme is used to inspect time dependent nonlinear Lane-Emden type equation of arbitrary order.It offers the solution in a fast converging series.The uniqueness and convergence analysis of the considered model is presented.The given examples confirm the competency as well as accuracy of the presented scheme.The behavior of obtained solution for distinct orders of fractional derivative is dis-cussed through graphs.The auxiliary parameter¯h offers a suitable mode of handling the region of con-vergence.The outcomes reveal that the q-HATM is attractive,reliable,efficient and very effective.展开更多
文摘This article is devoted to a newly introduced numerical method for time-fractional dispersive partial differential equation in a multidimensional space.The time-fractional dispersive partial differential equation plays a great role in solving the problems arising in ocean science and engineering.The numerical technique comprises of Sumudu transform,homotopy perturbation scheme and He’s polynomial,namely homotopy perturbation Sumudu transform method(HPSTM)is efficiently used to examine time-fractional dispersive partial differential equation of third order in multi-dimensional space.The approximate analytic solution of the time-fractional dispersive partial differential equation of third-order in multi-dimensional space obtained by HPSTM is compared with exact solution as well as the solution obtained by using Adomain decomposition method.The results derived with the aid of two techniques are in a good agreement and consequently these techniques may be considered as an alternative and efficient approach for solving fractional partial differential equations.Several test problems are experimented to confirm the accuracy and efficiency of the proposed methods.
文摘The study of dynamic behaviour of nonlinear models that arise in ocean engineering play a vital role in our daily life.There are many examples of ocean water waves which are nonlinear in nature.In shallow water,the linearization of the equations imposes severe conditions on wave amplitude than it does in deep water,and the strong nonlinear effects are observed.In this paper,q-homotopy analysis Laplace transform scheme is used to inspect time dependent nonlinear Lane-Emden type equation of arbitrary order.It offers the solution in a fast converging series.The uniqueness and convergence analysis of the considered model is presented.The given examples confirm the competency as well as accuracy of the presented scheme.The behavior of obtained solution for distinct orders of fractional derivative is dis-cussed through graphs.The auxiliary parameter¯h offers a suitable mode of handling the region of con-vergence.The outcomes reveal that the q-HATM is attractive,reliable,efficient and very effective.