期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Low-cost,simple,and scalable self-assembly of DNA origami nanostructures 被引量:3
1
作者 Patrick D.Halley Randy A.Patton +2 位作者 amjad chowdhury John C.Byrd Carlos E.Castro 《Nano Research》 SCIE EI CAS CSCD 2019年第5期1207-1215,共9页
Despite demonstrating exciting potential for applications such as drug delivery and biosensing,the development of nanodevices for practical applications and broader use in research and education are still hindered by ... Despite demonstrating exciting potential for applications such as drug delivery and biosensing,the development of nanodevices for practical applications and broader use in research and education are still hindered by the time,effort,and cost associated with DNA origami fabrication.Simple and robust methods to perform and scale the DNA origami self-assembly process are critical to facilitate broader use and translation to industrial or clinical applications.We report a simple approach to fold DNA origami nanostructures that is fast,robust,and scalable.We demonstrate fabrication at scales approximately 100-1,500-fold higher than typical scales.We further demonstrate an approach we termed low-cost efficient annealing (LEAN) self-assembly involving initial heating at 65 ℃ for 10 min,then annealing at 51 ℃ for 2 h,followed by brief quenching at 4 ℃ that leads to effective assembly of a range of DNA origami structures tested.In contrast to other methods for scaling DNA origami assembly,this approach can be carried out using cheap and widely available equipment (e.g.,hot plates,water baths,and laboratory burners) and uses standard recipes and materials so is readily applied to any existing or new DNA origami designs.We envision these methods can facilitate device development for commercial applications and facilitate broader use of DNA origami in research and education. 展开更多
关键词 DNA ORIGAMI DNA NANOTECHNOLOGY self assembly SCALABLE nanofabrication low cost fabrication NANOTECHNOLOGY education
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部