In the current work concrete mixes containing(7.0-33.11)weight%silica fume as fractional substitution of cement with water/cement ratio(0.42-0.48)were formulated conferring to an implemented two factorial central comp...In the current work concrete mixes containing(7.0-33.11)weight%silica fume as fractional substitution of cement with water/cement ratio(0.42-0.48)were formulated conferring to an implemented two factorial central composite design.The samples were water cured for 7,28,56,and 90 days.The samples were tested for compressive strength and density.The experimental results approved that compressive strength and density increase with age and with rising silica fume content up to 11.9 wt.%.Response surface analysis results for samples cured for 28 days confirmed that silica fume concrete with developed compressive strength(53.42 MPa)could be prepared by incorporation of 11.9 wt.%silica fume as a substituent for cement using a 0.42 water/cement ratio.An intensification in compressive strength and density(up to 39.3%and 2.6%)respectively was recorded for silica fume concrete mixes in contrast to Portland cement concrete.Overall,the research findings revealed that silica fume concretes prepared with appropriate silica fume content and water/cement ratio exhibited superior strength and density features candidate them to be used effectively in civil engineering structural applications.展开更多
文摘In the current work concrete mixes containing(7.0-33.11)weight%silica fume as fractional substitution of cement with water/cement ratio(0.42-0.48)were formulated conferring to an implemented two factorial central composite design.The samples were water cured for 7,28,56,and 90 days.The samples were tested for compressive strength and density.The experimental results approved that compressive strength and density increase with age and with rising silica fume content up to 11.9 wt.%.Response surface analysis results for samples cured for 28 days confirmed that silica fume concrete with developed compressive strength(53.42 MPa)could be prepared by incorporation of 11.9 wt.%silica fume as a substituent for cement using a 0.42 water/cement ratio.An intensification in compressive strength and density(up to 39.3%and 2.6%)respectively was recorded for silica fume concrete mixes in contrast to Portland cement concrete.Overall,the research findings revealed that silica fume concretes prepared with appropriate silica fume content and water/cement ratio exhibited superior strength and density features candidate them to be used effectively in civil engineering structural applications.