This study presents detailed analysis of spatiotemporal variations and trend of dust optical properties i.e., Aerosol Optical Depth(AOD) and Angstrom component over Asian desert regions using thirteen years of data(i....This study presents detailed analysis of spatiotemporal variations and trend of dust optical properties i.e., Aerosol Optical Depth(AOD) and Angstrom component over Asian desert regions using thirteen years of data(i.e., 2001–2013) retrieved from Aerosol Robotic Network(AERONET), Moderate Resolution Imaging Spectroradiometer(MODIS) and Multi-angle Imaging Spectroradiometer(MISR). These regions include Solar Village, Dunhuang and Dalangzadgad and are considered as origin of desert aerosols in Asia. Mann–Kendall trend test was used to show the trend of AOD. The relationship of AOD with weather parameters and general AOD trend over different wavelengths has also been shown. AOD's trend has been observed significant throughout the year in Solar Village, while in Dunhuang and Dalanzadgad the significant trend has been found only in peak period(March–June).Analysis show high values of AOD and low values of angstrom in Solar Village during peak period. In Chinese desert regions, high values of AOD have been found during peak period and low values in pre-peak period. Significant relationship has been observed between AOD and average temperature in Solar Village and Dalanzadgad whereas rainfall and wind speed showed no significant impact on AOD in all desert regions.展开更多
In order to study the concentrations of major components,characteristics and comparison in hazy and non-hazy days of PM10 in Beijing,aerosol samples were collected at urban site in Beijing from December 29,2014 to Jan...In order to study the concentrations of major components,characteristics and comparison in hazy and non-hazy days of PM10 in Beijing,aerosol samples were collected at urban site in Beijing from December 29,2014 to January 22,2015.Heavy metals like Zn,Pb,Mn,Cu,As,V,Cr and Cd were deeply studied considering their toxic effects on human being;nine water-soluble inorganic ions(SO4^2-,NO3^-,NH4^+,Na^+,K^+,Cl^-,Ca^2+and Mg^2+)and carbon fractions(OC and EC)were also analyzed.The concentrations of heavy metals were 1.03–1.98 times higher in hazy days than those in non-hazy days,mainly due to biomass burning and coal burning.The trends in total heavy metals concentrations were basically consistent with the trends in PM concentrations except for two obvious periods(12.29–12.30;1.14–1.15);but when air masses accumulated locally or around Beijing,trends in PM concentrations and heavy metals were opposite.The proportion for NO3^-/SO4^2-indicated that mobile sources such as automobiles were important reasons for haze in Beijing.Correlation between OC and EC during non-hazy days was strong(R^2=0.95)but it was low(R^2=0.67)during hazy days,and large variations for OC/EC values occurred in hazy days.The calculated mass concentration of SOC is 2.58μg/m^3,which only accounted for 10.1%of the OC concentration.When air masses from the far north-west,they decreased PM concentration in Beijing and they were relatively clean;however,those from the near east,south-east and south of the mainland increased PM concentration and they were dirty.展开更多
Soil moisture is an important state variable for land–atmosphere interactions.It is a vital land surface variable for research on hydrology,agriculture,climate,and drought monitoring.In current study,a soil moisture ...Soil moisture is an important state variable for land–atmosphere interactions.It is a vital land surface variable for research on hydrology,agriculture,climate,and drought monitoring.In current study,a soil moisture data assimilation framework has been developed by using the Community Land Model version 4.5(CLM4.5)and the proper orthogonal decomposition(POD)-based ensemble four-dimensional variational assimilation(PODEn4 DVar)algorithm.Assimilation experiments were conducted at four agricultural sites in Pakistan by assimilating in-situ soil moisture observations.The results showed that it was a reliable system.To quantify further the feasibility of the data assimilation(DA)system,soil moisture observations from the top four soil-depths(0–5,5–10,10–20,and 20–30 cm)were assimilated.The evaluation results indicated that the DA system improved soil moisture estimation.In addition,updating the soil moisture in the upper soil layers of CLM4.5 could improve soil moisture estimation in deeper soil layers[layer 7(L7,62.0 cm)and layer 8(L8,103.8 cm)].To further evaluate the DA system,observing system simulation experiments(OSSEs)were designed for Pakistan by assimilating daily observations.These idealized experiments produced statistical results that had higher correlation coefficients,reduced root mean square errors,and lower biases for assimilation,which showed that the DA system is able to produce and improve soil moisture estimation in Pakistan.展开更多
This study finds out seasonal and monthly variations in Aerosol Optical Depth(AOD)over eastern and western routes of China Pakistan Economic Corridor(CPEC)and the relationship between AOD and meteorological parameters...This study finds out seasonal and monthly variations in Aerosol Optical Depth(AOD)over eastern and western routes of China Pakistan Economic Corridor(CPEC)and the relationship between AOD and meteorological parameters(i.e.,temperature,rainfall and wind speed).The Moderate Resolution Imaging Spectroradiometer(MODIS)and Multi-angle Imaging Spectroradiometer(MISR)data was used from the terra satellite for the period of 2000-2016.This study aims to overtake the conventional view of the purpose of using the satellite datasets.This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region.Hence,after comparing MODIS AOD with MISR AOD,only MISR AOD dataset is used for further analysis.The results show a decreasing trend of AOD in summer season,a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes.Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan.The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect.Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route.The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.展开更多
Cloud–radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects(CREs) are used to quantitatively measure the aforementioned cli...Cloud–radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects(CREs) are used to quantitatively measure the aforementioned climatic role. This study investigates the characteristics of CREs and their temporal variations over three arid regions in central Asia(CA), East Asia(EA), and North America(NA), based on recent satellite datasets. Our results show that the annual mean shortwave(SW) and net CREs(SWCRE and NCRE) over the three arid regions are weaker than those in the same latitudinal zone of the Northern Hemisphere. In most cold months(November–March), the longwave(LW)CRE is stronger than the SWCRE over the three arid regions, leading to a positive NCRE and radiative warming in the regional atmosphere–land surface system. The cold-season mean NCRE at the top of the atmosphere(TOA) averaged over EA is 4.1 W m^-2, with a positive NCRE from November to March, and the intensity and duration of the positive NCRE is larger than that over CA and NA. The CREs over the arid regions of EA exhibit remarkable annual cycles due to the influence of the monsoon in the south. The TOA LWCRE over arid regions is closely related to the high-cloud fraction, and the SWCRE relates well to the total cloud fraction. In addition, the relationship between the SWCRE and the low-cloud fraction is good over NA because of the considerable occurrence of low cloud. Further results show that the interannual variation of TOA CREs is small over the arid regions of CA and EA, but their surface LWCREs show certain decreasing trends that correspond well to their decreasing total cloud fraction. It is suggested that combined studies of more observational cloud properties and meteorological elements are needed for indepth understanding of cloud–radiation processes over arid regions of the Northern Hemisphere.展开更多
基金supported by the National Natural Science Foundations of China (Nos.41475136 and 41590871)International Science & Technology Cooperation Program of China (No.2013DFG22820)
文摘This study presents detailed analysis of spatiotemporal variations and trend of dust optical properties i.e., Aerosol Optical Depth(AOD) and Angstrom component over Asian desert regions using thirteen years of data(i.e., 2001–2013) retrieved from Aerosol Robotic Network(AERONET), Moderate Resolution Imaging Spectroradiometer(MODIS) and Multi-angle Imaging Spectroradiometer(MISR). These regions include Solar Village, Dunhuang and Dalangzadgad and are considered as origin of desert aerosols in Asia. Mann–Kendall trend test was used to show the trend of AOD. The relationship of AOD with weather parameters and general AOD trend over different wavelengths has also been shown. AOD's trend has been observed significant throughout the year in Solar Village, while in Dunhuang and Dalanzadgad the significant trend has been found only in peak period(March–June).Analysis show high values of AOD and low values of angstrom in Solar Village during peak period. In Chinese desert regions, high values of AOD have been found during peak period and low values in pre-peak period. Significant relationship has been observed between AOD and average temperature in Solar Village and Dalanzadgad whereas rainfall and wind speed showed no significant impact on AOD in all desert regions.
基金supported by the International Partnership Program of Chinese Academy of Sciences(IPP)(No.134111KYSB20180021)the National Natural Science Foundations of China(No.41590871)+2 种基金the National Key R&D Program of China(no.2017YFB0504000)the National Natural Science Foundations of China(No.41475136)the International Science&Technology Cooperation Program of China(No.2013DFG22820)
文摘In order to study the concentrations of major components,characteristics and comparison in hazy and non-hazy days of PM10 in Beijing,aerosol samples were collected at urban site in Beijing from December 29,2014 to January 22,2015.Heavy metals like Zn,Pb,Mn,Cu,As,V,Cr and Cd were deeply studied considering their toxic effects on human being;nine water-soluble inorganic ions(SO4^2-,NO3^-,NH4^+,Na^+,K^+,Cl^-,Ca^2+and Mg^2+)and carbon fractions(OC and EC)were also analyzed.The concentrations of heavy metals were 1.03–1.98 times higher in hazy days than those in non-hazy days,mainly due to biomass burning and coal burning.The trends in total heavy metals concentrations were basically consistent with the trends in PM concentrations except for two obvious periods(12.29–12.30;1.14–1.15);but when air masses accumulated locally or around Beijing,trends in PM concentrations and heavy metals were opposite.The proportion for NO3^-/SO4^2-indicated that mobile sources such as automobiles were important reasons for haze in Beijing.Correlation between OC and EC during non-hazy days was strong(R^2=0.95)but it was low(R^2=0.67)during hazy days,and large variations for OC/EC values occurred in hazy days.The calculated mass concentration of SOC is 2.58μg/m^3,which only accounted for 10.1%of the OC concentration.When air masses from the far north-west,they decreased PM concentration in Beijing and they were relatively clean;however,those from the near east,south-east and south of the mainland increased PM concentration and they were dirty.
基金Supported by the National Key Basic Research and Development Program of China(2018YFC1506602)National Natural Science Foundation of China(41830967)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDY-SSWDQC012).
文摘Soil moisture is an important state variable for land–atmosphere interactions.It is a vital land surface variable for research on hydrology,agriculture,climate,and drought monitoring.In current study,a soil moisture data assimilation framework has been developed by using the Community Land Model version 4.5(CLM4.5)and the proper orthogonal decomposition(POD)-based ensemble four-dimensional variational assimilation(PODEn4 DVar)algorithm.Assimilation experiments were conducted at four agricultural sites in Pakistan by assimilating in-situ soil moisture observations.The results showed that it was a reliable system.To quantify further the feasibility of the data assimilation(DA)system,soil moisture observations from the top four soil-depths(0–5,5–10,10–20,and 20–30 cm)were assimilated.The evaluation results indicated that the DA system improved soil moisture estimation.In addition,updating the soil moisture in the upper soil layers of CLM4.5 could improve soil moisture estimation in deeper soil layers[layer 7(L7,62.0 cm)and layer 8(L8,103.8 cm)].To further evaluate the DA system,observing system simulation experiments(OSSEs)were designed for Pakistan by assimilating daily observations.These idealized experiments produced statistical results that had higher correlation coefficients,reduced root mean square errors,and lower biases for assimilation,which showed that the DA system is able to produce and improve soil moisture estimation in Pakistan.
基金the International Partnership Program of Chinese Academy of Sciences(IPP)(No.134111KYSB20180021)the National Natural Science Foundations of China(No.41590871)the International Science&Technology Cooperation Program of China(No.2013DFG22820)。
文摘This study finds out seasonal and monthly variations in Aerosol Optical Depth(AOD)over eastern and western routes of China Pakistan Economic Corridor(CPEC)and the relationship between AOD and meteorological parameters(i.e.,temperature,rainfall and wind speed).The Moderate Resolution Imaging Spectroradiometer(MODIS)and Multi-angle Imaging Spectroradiometer(MISR)data was used from the terra satellite for the period of 2000-2016.This study aims to overtake the conventional view of the purpose of using the satellite datasets.This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region.Hence,after comparing MODIS AOD with MISR AOD,only MISR AOD dataset is used for further analysis.The results show a decreasing trend of AOD in summer season,a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes.Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan.The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect.Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route.The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.
基金National Basic Research Program of China(2012CB955303)National Natural Science Foundation of China(41430425,41375031,and 41505130)State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences(SKLLQG1407)
文摘Cloud–radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects(CREs) are used to quantitatively measure the aforementioned climatic role. This study investigates the characteristics of CREs and their temporal variations over three arid regions in central Asia(CA), East Asia(EA), and North America(NA), based on recent satellite datasets. Our results show that the annual mean shortwave(SW) and net CREs(SWCRE and NCRE) over the three arid regions are weaker than those in the same latitudinal zone of the Northern Hemisphere. In most cold months(November–March), the longwave(LW)CRE is stronger than the SWCRE over the three arid regions, leading to a positive NCRE and radiative warming in the regional atmosphere–land surface system. The cold-season mean NCRE at the top of the atmosphere(TOA) averaged over EA is 4.1 W m^-2, with a positive NCRE from November to March, and the intensity and duration of the positive NCRE is larger than that over CA and NA. The CREs over the arid regions of EA exhibit remarkable annual cycles due to the influence of the monsoon in the south. The TOA LWCRE over arid regions is closely related to the high-cloud fraction, and the SWCRE relates well to the total cloud fraction. In addition, the relationship between the SWCRE and the low-cloud fraction is good over NA because of the considerable occurrence of low cloud. Further results show that the interannual variation of TOA CREs is small over the arid regions of CA and EA, but their surface LWCREs show certain decreasing trends that correspond well to their decreasing total cloud fraction. It is suggested that combined studies of more observational cloud properties and meteorological elements are needed for indepth understanding of cloud–radiation processes over arid regions of the Northern Hemisphere.