The rainstorm is believed to contribute flood disasters in upstream catchments,resulting in further consequences in downstream area due to rise of river water levels.Forecasting for flood water level has been challeng...The rainstorm is believed to contribute flood disasters in upstream catchments,resulting in further consequences in downstream area due to rise of river water levels.Forecasting for flood water level has been challenging,present-ing complex task due to its nonlinearities and dependencies.This study proposes a support vector machine regression model,regarded as a powerful machine learning-based technique to forecast flood water levels in downstream area for different lead times.As a case study,Kelantan River in Malaysia has been selected to validate the proposed model.Four water level stations in river basin upstream were identified as input variables.A river water level in downstream area was selected as output of flood forecasting model.A comparison with several bench-marking models,including radial basis function(RBF)and nonlinear autoregres-sive with exogenous input(NARX)neural network was performed.The results demonstrated that in terms of RMSE error,NARX model was better for the proposed models.However,support vector regression(SVR)demonstrated a more consistent performance,indicated by the highest coefficient of determination value in twelve-hour period ahead of forecasting time.The findings of this study signified that SVR was more capable of addressing the long-term flood forecasting problems.展开更多
基金This study is carried out using the Japan-ASEAN Integration Fund(JAIF)with reference number of UTM.K43/11.21/1/12(264)Malaysia-Japan International Institute of Technology,Universiti Teknologi Malaysia.
文摘The rainstorm is believed to contribute flood disasters in upstream catchments,resulting in further consequences in downstream area due to rise of river water levels.Forecasting for flood water level has been challenging,present-ing complex task due to its nonlinearities and dependencies.This study proposes a support vector machine regression model,regarded as a powerful machine learning-based technique to forecast flood water levels in downstream area for different lead times.As a case study,Kelantan River in Malaysia has been selected to validate the proposed model.Four water level stations in river basin upstream were identified as input variables.A river water level in downstream area was selected as output of flood forecasting model.A comparison with several bench-marking models,including radial basis function(RBF)and nonlinear autoregres-sive with exogenous input(NARX)neural network was performed.The results demonstrated that in terms of RMSE error,NARX model was better for the proposed models.However,support vector regression(SVR)demonstrated a more consistent performance,indicated by the highest coefficient of determination value in twelve-hour period ahead of forecasting time.The findings of this study signified that SVR was more capable of addressing the long-term flood forecasting problems.