期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optic nerve injury-induced regeneration in the adult zebrafish is accompanied by spatiotemporal changes in mitochondrial dynamics 被引量:1
1
作者 an beckers Luca Masin +7 位作者 annelies Van Dyck Steven Bergmans Sophie Vanhunsel anyi Zhang Tine Verreet Fabienne EPoulain Karl Farrow Lieve Moons 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期219-225,共7页
Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope ... Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope with this high energy demand.We previously showed that in adult zebrafish,subjected to an optic nerve crush,an antagonistic axon-dendrite interplay exists wherein the retraction of retinal ganglion cell dendrites is a prerequisite for effective axonal repair.We postulate a‘dendrites for regeneration’paradigm that might be linked to intraneuronal mitochondrial reshuffling,as ganglion cells likely have insufficient resources to maintain dendrites and restore axons simultaneously.Here,we characterized both mitochondrial distribution and mitochondrial dynamics within the different ganglion cell compartments(dendrites,somas,and axons)during the regenerative process.Optic nerve crush resulted in a reduction of mitochondria in the dendrites during dendritic retraction,whereafter enlarged mitochondria appeared in the optic nerve/tract during axonal regrowth.Upon dendritic regrowth in the retina,mitochondrial density inside the retinal dendrites returned to baseline levels.Moreover,a transient increase in mitochondrial fission and biogenesis was observed in retinal ganglion cell somas after optic nerve damage.Taken together,these findings suggest that during optic nerve injury-induced regeneration,mitochondria shift from the dendrites to the axons and back again and that temporary changes in mitochondrial dynamics support axonal and dendritic regrowth after optic nerve crush. 展开更多
关键词 axonal regeneration central nervous system dendrite remodeling energy metabolism FISSION mitochondria mitochondrial trafficking optic nerve crush retina zebrafish
下载PDF
Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? 被引量:4
2
作者 an beckers Lieve Moons 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1313-1316,共4页
Dendrites form an essential component of the neuronal circuit have been largely overlooked in regenerative research. Nevertheless, subtle changes in the dendritic arbors of neurons are one of the first stages of vario... Dendrites form an essential component of the neuronal circuit have been largely overlooked in regenerative research. Nevertheless, subtle changes in the dendritic arbors of neurons are one of the first stages of various neurodegenerative diseases, leading to dysfunctional neuronal networks and ultimately cellular death. Maintaining dendrites is therefore considered an essential neuroprotective strategy. This mini-review aims to discuss an intriguing hypothesis, which postulates that dendritic shrinkage is an important stimulant to boost axonal regeneration, and thus that preserving dendrites might not be the ideal therapeutic method to regain a full functional network upon central nervous system damage. Indeed, our study in zebrafish, a versatile animal model with robust regenerative capacity recently unraveled that dendritic retraction is evoked prior to axonal regrowth after optic nerve injury. Strikingly, inhibiting dendritic pruning upon damage perturbed axonal regeneration. This constraining effect of dendrites on axonal regrowth has sporadically been proposed in literature, as summarized in this short narrative. In addition, the review discusses a plausible underlying mechanism for the observed antagonistic axon-dendrite interplay, which is based on energy restriction inside neurons. Axonal injury indeed leads to a high local energy demand in which efficient axonal energy supply is fundamental to ensure regrowth. At the same time, axonal lesion is known to induce m让ochondrial depolarization, causing energy depletion in the axonal compartment of damaged neurons. Mitochondria, however, become mostly stationary after development, which has been proposed as a potential underlying reason for the low regenerative capacity of adult mammals. Per contra, upon reduced neuronal activity, mitochondrial mobility enhances. In this view, dendritic shrinkage after axonal injury in zebrafish could result in less synaptic input and hence, a release of mitochondria within the soma-dendrite compartment that then translocate to the axonal growth cone to stimulate axonal regeneration. If this hypothesis proofs to be correct, i.e. dendritic remodeling serving as fuel for axonal regeneration, we envision a major shift in the research focus within the neuroregenerative field and in the potential uncovering of various novel therapeutic targets. 展开更多
关键词 AXONAL regeneration DENDRITIC REMODELING retina central nervous system zebrafish MITOCHONDRIAL transport MITOCHONDRIAL dynamics energy supply
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部