To improve the red absorption and solubility of hypocrellin, we have synthesized a series of hypocrellin B derivatives. The pnotochemistry of these new compounds in anaerobic media has been investigated by using elect...To improve the red absorption and solubility of hypocrellin, we have synthesized a series of hypocrellin B derivatives. The pnotochemistry of these new compounds in anaerobic media has been investigated by using electronic paramagnetic resonance (EPR) and spectrophotometric methods. The semiquinone anion radicals can be produced by self-electron transfer on irradiation, with the formation efficiency and EPR hyperfine structures of the semiquinone anion radicals dependent on the structures of the derivatives. When an electron donor is present, the electron transfer from electron donor to hypocrellin B derivatives enhanced the production of the corresponding semiquinone anion radical; in addition, the semiquinone anion radical and hydroquinone can be detected spectrophotometrically. Structural modifications exert little effect on the absorption position of semiquinone anion radical and hydroquinone, but influence their formation efficiency significantly.展开更多
文摘To improve the red absorption and solubility of hypocrellin, we have synthesized a series of hypocrellin B derivatives. The pnotochemistry of these new compounds in anaerobic media has been investigated by using electronic paramagnetic resonance (EPR) and spectrophotometric methods. The semiquinone anion radicals can be produced by self-electron transfer on irradiation, with the formation efficiency and EPR hyperfine structures of the semiquinone anion radicals dependent on the structures of the derivatives. When an electron donor is present, the electron transfer from electron donor to hypocrellin B derivatives enhanced the production of the corresponding semiquinone anion radical; in addition, the semiquinone anion radical and hydroquinone can be detected spectrophotometrically. Structural modifications exert little effect on the absorption position of semiquinone anion radical and hydroquinone, but influence their formation efficiency significantly.