The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (π-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of π-A isot...The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (π-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of π-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca^2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca^2+ in subphase. The facts indicate the presence of coordination between Ca^2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca^2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca^2+ subphase.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20471001 and No.20671001), the Important Project of Anhui Provincial Education Department (No.ZD2007004-1), the Specific Project for Talents of Science and Technology of Universities of Anhui Province (No.2005hbz03), and the Foundation of Key Laboratory of Environment-friendly Polymer Materials of Anhui Province.
文摘The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (π-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of π-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca^2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca^2+ in subphase. The facts indicate the presence of coordination between Ca^2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca^2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca^2+ subphase.