期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of temperature and reaction path interaction on fluidization reduction kinetics of iron ore powder
1
作者 Guo-min Zhu Ming-wei Hu +3 位作者 an-nan dou Jin-yu Huang Jing Ding Qi-yan Xu 《Journal of Iron and Steel Research International》 SCIE EI CAS 2024年第8期1840-1849,共10页
Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on ... Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K. 展开更多
关键词 Reaction limiting link Gas internal diffusion Interface reaction Apparent activation energy Iron ore powder Reaction pathway Fluidization reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部