This study aimed to determine whether adding tributyrin to the diet of lambs impacts health, energy metabolism, ruminal environment, and meat quality. Twelve lambs were used;the control group received a basal diet, wh...This study aimed to determine whether adding tributyrin to the diet of lambs impacts health, energy metabolism, ruminal environment, and meat quality. Twelve lambs were used;the control group received a basal diet, while the tributyrin group received a diet with the additive mixed with concentrate (2 g/day/animal). The blood count was used for Leukocyte and lymphocyte counts, which were significantly higher in tributyrin-fed animals than in controls. The activity of the enzymes adenylate kinase and pyruvate kinase was higher in the liver and intestine of the tributyrin group than the controls;cytosolic creatine kinase activity was significantly higher in the intestine of lambs fed tributyrin. Glutathione S-transferase activity in the liver was significantly higher in animals in the tributyrin group. Superoxide dismutase activity was significantly higher in the intestine, with a lower protein carbonyl concentration in the tributyrin group. Bacterial activity through ruminal fluid collection was significantly lower when tributyrin was consumed, unlike the protozoan count, which was significantly higher in animals in the tributyrin group than in the controls. Tributyrin intake caused lower levels of short-chain fatty acids without changing the proportion of volatile fatty acids. The water retention capacity measured using an external compression method was significantly higher in the meat of the tributyrin group. The treatment affected some fatty acids in the meat, these acids were separated by chromatography where a lower amount of saturated fatty acids and a higher amount of monounsaturated fatty acids in the group that consumed tributyrin. These findings suggest that tributyrin in lamb diet alters blood and rumen environment biomarkers and improves the fatty acid profile of the meat.展开更多
文摘This study aimed to determine whether adding tributyrin to the diet of lambs impacts health, energy metabolism, ruminal environment, and meat quality. Twelve lambs were used;the control group received a basal diet, while the tributyrin group received a diet with the additive mixed with concentrate (2 g/day/animal). The blood count was used for Leukocyte and lymphocyte counts, which were significantly higher in tributyrin-fed animals than in controls. The activity of the enzymes adenylate kinase and pyruvate kinase was higher in the liver and intestine of the tributyrin group than the controls;cytosolic creatine kinase activity was significantly higher in the intestine of lambs fed tributyrin. Glutathione S-transferase activity in the liver was significantly higher in animals in the tributyrin group. Superoxide dismutase activity was significantly higher in the intestine, with a lower protein carbonyl concentration in the tributyrin group. Bacterial activity through ruminal fluid collection was significantly lower when tributyrin was consumed, unlike the protozoan count, which was significantly higher in animals in the tributyrin group than in the controls. Tributyrin intake caused lower levels of short-chain fatty acids without changing the proportion of volatile fatty acids. The water retention capacity measured using an external compression method was significantly higher in the meat of the tributyrin group. The treatment affected some fatty acids in the meat, these acids were separated by chromatography where a lower amount of saturated fatty acids and a higher amount of monounsaturated fatty acids in the group that consumed tributyrin. These findings suggest that tributyrin in lamb diet alters blood and rumen environment biomarkers and improves the fatty acid profile of the meat.