The aim of this study was to determinate the gene expression levels of angiotensinogen, angiotensin converting enzyme, renin, (pro)renin receptor, and the final rennin-angiotensin system (RAS) products Angiotensin (An...The aim of this study was to determinate the gene expression levels of angiotensinogen, angiotensin converting enzyme, renin, (pro)renin receptor, and the final rennin-angiotensin system (RAS) products Angiotensin (Ang) II and Ang 1-7 inthe remnant kidney of 5/6 nephrectomized rats and its response to RAS pharmacological blockade. Male Wistar rats were divided into five groups: sham operated (SO), 5/6 nephrectomized (NFX), NFX + captopril (50 mg/ kg/day), NFX + losartan (10 mg/kg/day), and NFX + aliskiren (10 mg/kg/day). Animals were followed up for 60 days and protein urine excretion was measured. Systolic blood pressure, renal tissue RAS mRNA expression levels, plasma Ang II, and plasma Ang 1-7 were evaluated at day 60 after nephrectomy. Blood pressure and urine protein were increased after 5/6 nephrectomy. Ang II levels were increased 9.4 fold, whereas Ang 1-7 decreased 72.9% in NFX animals compared with SO rats. 5/6 nephrectomy increased renal angiotensinogen and (pro)renin receptor mRNA expression but down-regulated renin mRNA expression. RAS blockade restored the systolic blood pressure to normal values and slowed down urinary protein excretion, and also prevented changes in Ang II and Ang 1-7. RAS blockade reduced (pro)renin receptor, ACE, and AGT mRNA expression in the remnant kidney. However, renin mRNA expression increased compared with NFX rats. In conclusion these results suggest that inhibition of Ang II synthesis by RAS blockade is associated with renal regulation of RAS mRNA expression and this may be through a mechanism related with the Ang II/Ang 1-7 balance.展开更多
文摘The aim of this study was to determinate the gene expression levels of angiotensinogen, angiotensin converting enzyme, renin, (pro)renin receptor, and the final rennin-angiotensin system (RAS) products Angiotensin (Ang) II and Ang 1-7 inthe remnant kidney of 5/6 nephrectomized rats and its response to RAS pharmacological blockade. Male Wistar rats were divided into five groups: sham operated (SO), 5/6 nephrectomized (NFX), NFX + captopril (50 mg/ kg/day), NFX + losartan (10 mg/kg/day), and NFX + aliskiren (10 mg/kg/day). Animals were followed up for 60 days and protein urine excretion was measured. Systolic blood pressure, renal tissue RAS mRNA expression levels, plasma Ang II, and plasma Ang 1-7 were evaluated at day 60 after nephrectomy. Blood pressure and urine protein were increased after 5/6 nephrectomy. Ang II levels were increased 9.4 fold, whereas Ang 1-7 decreased 72.9% in NFX animals compared with SO rats. 5/6 nephrectomy increased renal angiotensinogen and (pro)renin receptor mRNA expression but down-regulated renin mRNA expression. RAS blockade restored the systolic blood pressure to normal values and slowed down urinary protein excretion, and also prevented changes in Ang II and Ang 1-7. RAS blockade reduced (pro)renin receptor, ACE, and AGT mRNA expression in the remnant kidney. However, renin mRNA expression increased compared with NFX rats. In conclusion these results suggest that inhibition of Ang II synthesis by RAS blockade is associated with renal regulation of RAS mRNA expression and this may be through a mechanism related with the Ang II/Ang 1-7 balance.