期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fault Detection Using Negative Selection and Genetic Algorithms 被引量:3
1
作者 anam abid Zia Ul HAQ Muhammad Tahir KHAN 《Instrumentation》 2019年第3期39-51,共13页
In this paper,negative selection and genetic algorithms are combined and an improved bi-objective optimization scheme is presented to achieve optimized negative selection algorithm detectors.The main aim of the optima... In this paper,negative selection and genetic algorithms are combined and an improved bi-objective optimization scheme is presented to achieve optimized negative selection algorithm detectors.The main aim of the optimal detector generation technique is maximal nonself space coverage with reduced number of diversified detectors.Conventionally,researchers opted clonal selection based optimization methods to achieve the maximal nonself coverage milestone;however,detectors cloning process results in generation of redundant similar detectors and inefficient detector distribution in nonself space.In approach proposed in the present paper,the maximal nonself space coverage is associated with bi-objective optimization criteria including minimization of the detector overlap and maximization of the diversity factor of the detectors.In the proposed methodology,a novel diversity factorbased approach is presented to obtain diversified detector distribution in the nonself space.The concept of diversified detector distribution is studied for detector coverage with 2-dimensional pentagram and spiral self-patterns.Furthermore,the feasibility of the developed fault detection methodology is tested the fault detection of induction motor inner race and outer race bearings. 展开更多
关键词 Detector Coverage Diversity Factor Fault Detection Genetic Algorithm Negative Selection Algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部