This paper examines the results of the distributed generation penetration in large-scale medium-voltage power distribution networks. The network examined as a study case consists of twenty one lines fed by three power...This paper examines the results of the distributed generation penetration in large-scale medium-voltage power distribution networks. The network examined as a study case consists of twenty one lines fed by three power substations. The injected power comes mainly from photovoltaic units. Specifically, the influences of distributed generation on the network branch currents, losses and voltage profile as well as on the short-circuit level at the medium voltage busbars of the infeeding substations are examined according to international and national standards. The arising problems are explored and technical solutions are proposed. This paper is a pilot application as general conclusions concerning the extended distributed generation penetration in real power distribution networks are set out.展开更多
文摘This paper examines the results of the distributed generation penetration in large-scale medium-voltage power distribution networks. The network examined as a study case consists of twenty one lines fed by three power substations. The injected power comes mainly from photovoltaic units. Specifically, the influences of distributed generation on the network branch currents, losses and voltage profile as well as on the short-circuit level at the medium voltage busbars of the infeeding substations are examined according to international and national standards. The arising problems are explored and technical solutions are proposed. This paper is a pilot application as general conclusions concerning the extended distributed generation penetration in real power distribution networks are set out.