As the second largest dust source on the globe,the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change.The West Pacific is the main sediment sink for eolia...As the second largest dust source on the globe,the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change.The West Pacific is the main sediment sink for eolian dust transported eastward from the Asian interior.Clay minerals,as the major fine-grained weathering products of continental rocks,can be readily transported by wind or currents over long distances and thus have been widely used in the reconstruction of paleoclimate and weathering history.However,the overall evolutionary tendency and response mechanism of clay mineral records over large spatial and long timescales across Asia remain unclear.Here,two continuous and high-resolution clay mineral records since 30 Ma were reconstructed from sediments at Deep Sea Drilling Program(DSDP)Sites 292 and 296 in the Philippine Sea.Clay minerals and Sr-Nd isotope compositions were used to constrain provenance and reconstruct the drying history of the dust source region since the Oligocene.The results show that the clay-sized detrital sediments in the Philippine Sea are a mixture of Asian eolian dust and volcanic materials from the West Pacific arcs.Based on the clay mineral compositions and eolian flux,we reveal that the Asian interior has been continuously drying since the late Oligocene and that stepwise enhanced aridification occurred at approximately 20,14,7,and 3 Ma.Compared with other regions of the world,the relative contents of illite and chlorite increased more dramatically in Asia during the late Cenozoic,and the inconsistency became more obvious at approximately 20 Ma.Since 3 Ma,illite and chlorite have increased consistently across the globe.Combined with the Asian tectonic and climatic history,we suggest that the increase in illite and chlorite from Asia between 20 and 3 Ma was mainly in response to the uplift of the Himalayan-Tibetan Plateau,whereas after 3 Ma,it was primarily controlled by global cooling driven by the expansion of the Arctic ice sheet.展开更多
nhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau(HTP)has been considered as the major cause of pCO_(2) decline and Cenozoic cooling.However,this hypothesis remains to be validated,lar...nhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau(HTP)has been considered as the major cause of pCO_(2) decline and Cenozoic cooling.However,this hypothesis remains to be validated,largely due to the lack of a reliable reconstruction of the HTP weathering flux.Here,we present a 37-million-year record of the difference in the seawater radiogenic neodymium isotopic composition(△ε_(Nd))of Ocean Drilling Program(ODP)sites and Fe-Mn crusts between the northern and central Indian Ocean,which indicates the contribution of regional weathering input from the South Asian continent to the Indian Ocean.The results show a long-term increase in △ε_(Nd) and thus provide the first critical evidence of enhanced South Asian weathering input since the late Eocene.The evolution coincided well with major pulses of surface uplift in the HTP and global climatic transitions.Our foraminiferal eNd record suggests that tectonic uplift and silicate weathering in South Asia,especially in the Himalayas,might have played a significant role in the late Cenozoic cooling.展开更多
According to the IPCC Sixth Assessment Report,the global sea level is rising rapidly and rose up to 3.7 mm/a during 2006–2018,which seriously threatens the lives of people in coastal areas.Therefore,it is important t...According to the IPCC Sixth Assessment Report,the global sea level is rising rapidly and rose up to 3.7 mm/a during 2006–2018,which seriously threatens the lives of people in coastal areas.Therefore,it is important to scientifically assess the mode of sealevel change in a global warming context.However,our ability to predict sea-level rise and its impact on coastal zones is hampered by limited instrumental observations.展开更多
A floating dust weather happened on March 11-12, 1995 over the Qingdao region. Its sources and throughput to the ocean were studied. The result indicated that the floating dust was caused by the dust storm that starte...A floating dust weather happened on March 11-12, 1995 over the Qingdao region. Its sources and throughput to the ocean were studied. The result indicated that the floating dust was caused by the dust storm that started in northwestern China and developed in northern China. 21×10\+6t fine soil particles were carried to the ocean during the episode.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42125602,42076052)the National Key Research and Development Program of China(Grant No.2022YFF0800503)+3 种基金the Strategic Priority Research Program of CAS(Grant No.XDB40010100)the Marine S&T Fund of Shandong Province for QNLM(Grant No.2022QNLM050203)the Innovation Project of QNLM(Grant No.MGQNLM-KF202001)the Taishan and Aoshan Talents Program(Grant No.2017ASTCP-ES01).
文摘As the second largest dust source on the globe,the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change.The West Pacific is the main sediment sink for eolian dust transported eastward from the Asian interior.Clay minerals,as the major fine-grained weathering products of continental rocks,can be readily transported by wind or currents over long distances and thus have been widely used in the reconstruction of paleoclimate and weathering history.However,the overall evolutionary tendency and response mechanism of clay mineral records over large spatial and long timescales across Asia remain unclear.Here,two continuous and high-resolution clay mineral records since 30 Ma were reconstructed from sediments at Deep Sea Drilling Program(DSDP)Sites 292 and 296 in the Philippine Sea.Clay minerals and Sr-Nd isotope compositions were used to constrain provenance and reconstruct the drying history of the dust source region since the Oligocene.The results show that the clay-sized detrital sediments in the Philippine Sea are a mixture of Asian eolian dust and volcanic materials from the West Pacific arcs.Based on the clay mineral compositions and eolian flux,we reveal that the Asian interior has been continuously drying since the late Oligocene and that stepwise enhanced aridification occurred at approximately 20,14,7,and 3 Ma.Compared with other regions of the world,the relative contents of illite and chlorite increased more dramatically in Asia during the late Cenozoic,and the inconsistency became more obvious at approximately 20 Ma.Since 3 Ma,illite and chlorite have increased consistently across the globe.Combined with the Asian tectonic and climatic history,we suggest that the increase in illite and chlorite from Asia between 20 and 3 Ma was mainly in response to the uplift of the Himalayan-Tibetan Plateau,whereas after 3 Ma,it was primarily controlled by global cooling driven by the expansion of the Arctic ice sheet.
文摘nhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau(HTP)has been considered as the major cause of pCO_(2) decline and Cenozoic cooling.However,this hypothesis remains to be validated,largely due to the lack of a reliable reconstruction of the HTP weathering flux.Here,we present a 37-million-year record of the difference in the seawater radiogenic neodymium isotopic composition(△ε_(Nd))of Ocean Drilling Program(ODP)sites and Fe-Mn crusts between the northern and central Indian Ocean,which indicates the contribution of regional weathering input from the South Asian continent to the Indian Ocean.The results show a long-term increase in △ε_(Nd) and thus provide the first critical evidence of enhanced South Asian weathering input since the late Eocene.The evolution coincided well with major pulses of surface uplift in the HTP and global climatic transitions.Our foraminiferal eNd record suggests that tectonic uplift and silicate weathering in South Asia,especially in the Himalayas,might have played a significant role in the late Cenozoic cooling.
基金supported by the National Natural Science Foundation of China(42276060 and 41876068)the Natural Science Foundation of Shandong Province(ZR2021YQ26)。
文摘According to the IPCC Sixth Assessment Report,the global sea level is rising rapidly and rose up to 3.7 mm/a during 2006–2018,which seriously threatens the lives of people in coastal areas.Therefore,it is important to scientifically assess the mode of sealevel change in a global warming context.However,our ability to predict sea-level rise and its impact on coastal zones is hampered by limited instrumental observations.
文摘A floating dust weather happened on March 11-12, 1995 over the Qingdao region. Its sources and throughput to the ocean were studied. The result indicated that the floating dust was caused by the dust storm that started in northwestern China and developed in northern China. 21×10\+6t fine soil particles were carried to the ocean during the episode.