The use of dyes such as tartrazine (E102) and sunset yellow (E102) in food, beverages and health products for technological and commercial purposes is common. The adverse effects caused by these dyes, such as allergie...The use of dyes such as tartrazine (E102) and sunset yellow (E102) in food, beverages and health products for technological and commercial purposes is common. The adverse effects caused by these dyes, such as allergies and hyperactivity disorder have been reported, especially in children. In the present study, a chromatographic method was developed and validated for simultaneous determination of tartrazine and sunset yellow. The chromatographic separation was performed on a Lichrocart<sup>®</sup> C18 column (125 × 4.6 mm;5 μm) with a security Guard-C18 column (4 × 2.0 mm, 5 μm;Phenomenex, Torrance, CA, USA) maintained at 30°C. The mobile phase consisted of a mixture of acetonitrile/ammonium acetate buffer pH 6.8 in gradient mode with a flow rate of 1 mL/min. The injection volume was 10 μL. The detection wavelength was set at 455 nm. The parameters of specificity, linearity, precision, repeatability, accuracy and sensitivity were examined for validation. The developed method is linear in the range of 1 μg/mL to 100 μg/mL with a R<sup>2</sup>> 0.998. The intra-day and inter-day precisions (RSD) were less than 0.6% and 3.1% respectively. The detection limit was 0.03 μg/mL and the quantification limit was 0.1 μg/mL. The retention time of tartrazine was 2.86 min, while sunset yellow was detected at 5.67 min. A simple, rapid, accurate and robust HPLC/UV-Visible method was developed and validated for simultaneous identification and quantification of tartrazine and sunset yellow. This developed method was successfully applied for the simultaneous determination of tartrazine and sunset yellow in soft drinks sold in Benin.展开更多
文摘The use of dyes such as tartrazine (E102) and sunset yellow (E102) in food, beverages and health products for technological and commercial purposes is common. The adverse effects caused by these dyes, such as allergies and hyperactivity disorder have been reported, especially in children. In the present study, a chromatographic method was developed and validated for simultaneous determination of tartrazine and sunset yellow. The chromatographic separation was performed on a Lichrocart<sup>®</sup> C18 column (125 × 4.6 mm;5 μm) with a security Guard-C18 column (4 × 2.0 mm, 5 μm;Phenomenex, Torrance, CA, USA) maintained at 30°C. The mobile phase consisted of a mixture of acetonitrile/ammonium acetate buffer pH 6.8 in gradient mode with a flow rate of 1 mL/min. The injection volume was 10 μL. The detection wavelength was set at 455 nm. The parameters of specificity, linearity, precision, repeatability, accuracy and sensitivity were examined for validation. The developed method is linear in the range of 1 μg/mL to 100 μg/mL with a R<sup>2</sup>> 0.998. The intra-day and inter-day precisions (RSD) were less than 0.6% and 3.1% respectively. The detection limit was 0.03 μg/mL and the quantification limit was 0.1 μg/mL. The retention time of tartrazine was 2.86 min, while sunset yellow was detected at 5.67 min. A simple, rapid, accurate and robust HPLC/UV-Visible method was developed and validated for simultaneous identification and quantification of tartrazine and sunset yellow. This developed method was successfully applied for the simultaneous determination of tartrazine and sunset yellow in soft drinks sold in Benin.