期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
错流板翅式换热器分布参数模型构建和优化研究 被引量:4
1
作者 李科 文键 +1 位作者 厉彦忠 andrea diani 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第10期81-90,共10页
为了研究多股流错流板翅式换热器的流动换热性能,基于MATLAB编程,考虑隔板中轴向和横向导热效应,构建了错流板翅式换热器的三维分布参数模型,程序模拟结果和热动实验台三股流板翅式换热器的实验结果的吻合程度良好。分析了错流板翅式换... 为了研究多股流错流板翅式换热器的流动换热性能,基于MATLAB编程,考虑隔板中轴向和横向导热效应,构建了错流板翅式换热器的三维分布参数模型,程序模拟结果和热动实验台三股流板翅式换热器的实验结果的吻合程度良好。分析了错流板翅式换热器整体结构参数和工况参数对换热量和泵功消耗的影响。结果表明,针对所研究的三股流错流换热器,单位泵功换热量存在极值,它先随着A流体(大流量冷流体)流量的增加而增加,当A流体流量增加至1300kg/h时,又随着A流体流量的增加而减少。对换热器设置4种不同xy面(底面)投影面积分别进行分析,结果表明,维持xy面投影面积不变而变化换热器一边长度,换热量基本不发生变化,但是当换热器y边长度(A流体流动方向长度)为0.15~0.20m时,泵功消耗最低,单位泵功换热量最大。该研究可为错流板翅式换热器的优化工况选择和高效紧凑设计提供理论指导。 展开更多
关键词 板翅换热器 错流 分布参数模型 换热量 泵功
下载PDF
Machine and deep learning driven models for the design of heat exchangers with micro-finned tubes
2
作者 Emad Efatinasab Nima Irannezhad +1 位作者 Mirco Rampazzo andrea diani 《Energy and AI》 EI 2024年第2期417-437,共21页
The design of micro-finned tube heat exchangers is a complex task due to intricate geometry, heat transfer goals, material selection, and manufacturing challenges. Nowadays, mathematical models provide valuable insigh... The design of micro-finned tube heat exchangers is a complex task due to intricate geometry, heat transfer goals, material selection, and manufacturing challenges. Nowadays, mathematical models provide valuable insights, aid in optimization, and allow us to explore various design parameters efficiently. However, existing empirical models often fall short in facilitating an optimal design because of their limited accuracy, sensitivity to assumption, and context dependency. In this scenario, the use of Machine and Deep Learning (ML and DL) methods can enhance accuracy, manage nonlinearity, adjust to varying conditions, decrease dependence on assumptions, automatically extract pertinent features, and provide scalability. Indeed, ML and DL techniques can derive valuable insights from datasets, contributing to a comprehensive understanding. By means of multiple ML and DL methods, this paper addresses the challenge of estimating key parameters in micro-finned tube heat exchangers such as the heat transfer coefficient (HTC) and frictional pressure drop (FPD). The methods have been trained and tested using an experimental dataset consisting of over a thousand data points associated with flow condensation, involving various tube geometries. In this context, the Artificial Neural Network (ANN) demonstrates superior performance in accurately estimating parameters with MAEs in the range below 4.5% for both HTC and FPD. Finally, recognizing the importance of comprehending the internal mechanisms of the black-box ANN model, the paper explores its interpretability aspects. 展开更多
关键词 CONDENSATION Micro-finned tube Artificial neural network Machine learning Deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部