The aim of this paper is the design of a Solar-Electric Boat for tourists’ transport along the coast, in the rivers, in the lakes. Our idea is to define the project guidelines for the realization of a zero impact boa...The aim of this paper is the design of a Solar-Electric Boat for tourists’ transport along the coast, in the rivers, in the lakes. Our idea is to define the project guidelines for the realization of a zero impact boat. This paper illustrates the practical new technologies (naval architecture small craft design, mechanical and electrical design), rational design and engineering approach, safety and reliability methods used in solar boats. In our project, the boat is powered by lithiumion batteries that can be charged at any time by the photovoltaic generator placed on a flat top structure. The project is designed for brief trip around coast, where the public transport becomes very polluting during summer. Starting from the consideration that this boat is used during sunny weather, it is possible to know the boat’s energy demand and proceed with the design of a suitable electric boat and of the energy storage/management system. It is also proposed an innovative management of charge/discharge of the batteries. With this management, we have optimized the use and prolonged the time of life of the batteries during the navigation and the control of the real autonomy of it.展开更多
In recent years, light emitting diodes (LEDs) have entered the lighting market, offering consumers performance and features exceeding those of traditional lighting technologies. LEDs (light-emitting diodes) are becomi...In recent years, light emitting diodes (LEDs) have entered the lighting market, offering consumers performance and features exceeding those of traditional lighting technologies. LEDs (light-emitting diodes) are becoming more common in safety signals for railroad, highway, automotive, and many other applications. In addition to having a longer life and greater durability than incandescent bulbs, LEDs are much more energy efficient than their incandescent counterparts. Since the heat from the junction must be dissipated into the ambient somehow, changing the ambient temperature affects the junction temperature and hence the emitted light. When the LEDs are used in the railway or traffic signals, the optical proprieties of these have to maintain more rigorous specifications. Therefore the development of signals using LED as light source, able to respect intensity specifications, is not simple. In this paper, we describe problems of the temperature dependent changes of LED intensity and color shift. Besides we will introduce an innovative technique, that we have developed, to allow the use of the LEDs in applications with rigorous specifications.展开更多
文摘The aim of this paper is the design of a Solar-Electric Boat for tourists’ transport along the coast, in the rivers, in the lakes. Our idea is to define the project guidelines for the realization of a zero impact boat. This paper illustrates the practical new technologies (naval architecture small craft design, mechanical and electrical design), rational design and engineering approach, safety and reliability methods used in solar boats. In our project, the boat is powered by lithiumion batteries that can be charged at any time by the photovoltaic generator placed on a flat top structure. The project is designed for brief trip around coast, where the public transport becomes very polluting during summer. Starting from the consideration that this boat is used during sunny weather, it is possible to know the boat’s energy demand and proceed with the design of a suitable electric boat and of the energy storage/management system. It is also proposed an innovative management of charge/discharge of the batteries. With this management, we have optimized the use and prolonged the time of life of the batteries during the navigation and the control of the real autonomy of it.
文摘In recent years, light emitting diodes (LEDs) have entered the lighting market, offering consumers performance and features exceeding those of traditional lighting technologies. LEDs (light-emitting diodes) are becoming more common in safety signals for railroad, highway, automotive, and many other applications. In addition to having a longer life and greater durability than incandescent bulbs, LEDs are much more energy efficient than their incandescent counterparts. Since the heat from the junction must be dissipated into the ambient somehow, changing the ambient temperature affects the junction temperature and hence the emitted light. When the LEDs are used in the railway or traffic signals, the optical proprieties of these have to maintain more rigorous specifications. Therefore the development of signals using LED as light source, able to respect intensity specifications, is not simple. In this paper, we describe problems of the temperature dependent changes of LED intensity and color shift. Besides we will introduce an innovative technique, that we have developed, to allow the use of the LEDs in applications with rigorous specifications.