This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in th...This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions.展开更多
文摘This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions.