期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influence of Bottom Inclination on the Flow Structure in a Rotating Convective Layer
1
作者 andrei Vasiliev andrei sukhanovskii Elena Popova 《Fluid Dynamics & Materials Processing》 EI 2024年第4期739-748,共10页
The formation of convective flows in a rotating cylindrical layer with an inclined bottom and free surface is studied.Convection is driven by localized cooling at the center of the upper free surface and by rim heatin... The formation of convective flows in a rotating cylindrical layer with an inclined bottom and free surface is studied.Convection is driven by localized cooling at the center of the upper free surface and by rim heating at the bottom near the sidewall.The horizontal temperature difference in a rotating layer leads to the formation of a convective flow with a complex structure.The mean meridional circulation,consisting of three cells,provides a strongly non-uniform differential rotation.As a result of the instability of the main cyclonic zonal flow,the train of baroclinic waves appears in the upper layer.The baroclinic waves provide most of the heat transfer in the middle radii and are responsible for strong temperature and velocity fluctuations.It is shown that the inclination of the bottom is a crucial factor for the structure of the convective cells and the dynamics of the baroclinic waves.The increase in the inclination angle leads to a significant increase in the energy of the waves.The obtained results may be important for heat and mass transfer in various geophysical and industrial systems,including transport of various additives and impurities in rotating crucibles,and crystallization processes. 展开更多
关键词 Laboratory modeling global atmospheric circulation baroclinic waves beta-effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部