This paper describes a calculation strategy that allows determining the optimal number and placement of sectionalizing switches in MV radial distribution networks, in correspondence to technical, regulatory and econom...This paper describes a calculation strategy that allows determining the optimal number and placement of sectionalizing switches in MV radial distribution networks, in correspondence to technical, regulatory and economical aspects. A formulation that takes into account the investment, maintenance and power interruption costs has been developed, seeking for a reduction in total costs while taking care of the regulatory and technical aspects. A multicriteria optimization procedure allows incorporating in the calculating process various quality indicators which can be either global or individual indexes. This way of formulation makes the proposal flexible as well as applicable to allow including aspects that were not considered in previous papers. The solution methodology is mainly based on dynamic programming, fuzzy logic, heuristics and economic analysis techniques. Given its flexibility, the proposed tool is easily adapted to real distribution systems, by considering the individual requirements of each network. The solutions obtained in simulations are oriented to help decision-making for the operator.展开更多
文摘This paper describes a calculation strategy that allows determining the optimal number and placement of sectionalizing switches in MV radial distribution networks, in correspondence to technical, regulatory and economical aspects. A formulation that takes into account the investment, maintenance and power interruption costs has been developed, seeking for a reduction in total costs while taking care of the regulatory and technical aspects. A multicriteria optimization procedure allows incorporating in the calculating process various quality indicators which can be either global or individual indexes. This way of formulation makes the proposal flexible as well as applicable to allow including aspects that were not considered in previous papers. The solution methodology is mainly based on dynamic programming, fuzzy logic, heuristics and economic analysis techniques. Given its flexibility, the proposed tool is easily adapted to real distribution systems, by considering the individual requirements of each network. The solutions obtained in simulations are oriented to help decision-making for the operator.