In the originally published version of this work,a mistake appeared in Figure 1A wherein the red circles,meant to highlight differing areas of the two side-by-side UMAPs,were misaligned in the image.The corrected Figu...In the originally published version of this work,a mistake appeared in Figure 1A wherein the red circles,meant to highlight differing areas of the two side-by-side UMAPs,were misaligned in the image.The corrected Figure 1,in which the red circles indicate areas of differing density within cluster#2,now appears both in the online article and below.The authors apologize for the confusion.展开更多
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia.This symbiosis called nodulation i...Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia.This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria,as well as the initiation of nodule primordia from root cortical,endodermal,and pericycle cells,leading to the development of a new root organ,the nodule,where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant.Here,we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq(sNucRNA-seq)profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots.A gene expression map of the Medicago root was generated,comprising 25 clusters,which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes.A focus on root hair,cortex,endodermis,and pericycle cell types,showing the strongest differential regulation in response to a short-term(48 h)rhizobium inoculation,revealed not only known genes and functional pathways,validating the sNucRNA-seq approach,but also numerous novel genes and pathways,allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.展开更多
文摘In the originally published version of this work,a mistake appeared in Figure 1A wherein the red circles,meant to highlight differing areas of the two side-by-side UMAPs,were misaligned in the image.The corrected Figure 1,in which the red circles indicate areas of differing density within cluster#2,now appears both in the online article and below.The authors apologize for the confusion.
基金Supported by grants to M.L.from the U.S.National Sclence Foundation (I0S#1854326 and 2127485),USDA-NIFA(2022-67013-36144)by the Center for Plant Science Innovation,and by the Department of Agronomy and Horticulture at the University of Nebraska-Lincoln.Work in F.F.labo-ratory was supported by the"Ecole Universitaire de Recherche"Saclay Plant Sciences(EUR-SPS).
文摘Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia.This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria,as well as the initiation of nodule primordia from root cortical,endodermal,and pericycle cells,leading to the development of a new root organ,the nodule,where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant.Here,we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq(sNucRNA-seq)profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots.A gene expression map of the Medicago root was generated,comprising 25 clusters,which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes.A focus on root hair,cortex,endodermis,and pericycle cell types,showing the strongest differential regulation in response to a short-term(48 h)rhizobium inoculation,revealed not only known genes and functional pathways,validating the sNucRNA-seq approach,but also numerous novel genes and pathways,allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.