Polaritons are quasi-particles composed of a superposition of excitons and photons that can be created within a strongly coupled optical microcavity.Here,we describe a structure in which a strongly coupled microcavity...Polaritons are quasi-particles composed of a superposition of excitons and photons that can be created within a strongly coupled optical microcavity.Here,we describe a structure in which a strongly coupled microcavity containing an organic semiconductor is coupled to a second microcavity containing a series of weakly coupled inorganic quantum wells.We show that optical hybridisation occurs between the optical modes of the two cavities,creating a delocalised polaritonic state.By electrically injecting electron–hole pairs into the inorganic quantum-well system,we are able to transfer energy between the cavities and populate organic-exciton polaritons.Our approach represents a new strategy to create highly efficient devices for emerging‘polaritonic’technologies.展开更多
基金funding this paper via the Programme Grant‘Hybrid Polaritonics’(EP/M025330/1)。
文摘Polaritons are quasi-particles composed of a superposition of excitons and photons that can be created within a strongly coupled optical microcavity.Here,we describe a structure in which a strongly coupled microcavity containing an organic semiconductor is coupled to a second microcavity containing a series of weakly coupled inorganic quantum wells.We show that optical hybridisation occurs between the optical modes of the two cavities,creating a delocalised polaritonic state.By electrically injecting electron–hole pairs into the inorganic quantum-well system,we are able to transfer energy between the cavities and populate organic-exciton polaritons.Our approach represents a new strategy to create highly efficient devices for emerging‘polaritonic’technologies.