We report a method to produce a uniform mixture of uranium dioxide spherical particles in a tungsten matrix. This method involves mixing 0.5 weight percent of high density polyethylene binder with 60 volume percent ur...We report a method to produce a uniform mixture of uranium dioxide spherical particles in a tungsten matrix. This method involves mixing 0.5 weight percent of high density polyethylene binder with 60 volume percent uranium dioxide spheres and 40 volume percent tungsten powders. Initially, hafnium oxide spheres were used as a surrogate for uranium dioxide spheres. The HfO2/W/PE powders were thoroughly mixed in a Turbula, then mixed on a hot plate above the drop point of the binder. These powders were then densified using spark plasma sintering. Microstructure was evaluated using scanning electron microscopy, density was measured and hardness measurements were made. Initial carbon content of the powders were measured and carbon content of the sintered materials was measured. Subsequently, W/UO2/Binder powders were mixed using the same methodology to ensure the process could be used for this system. These powders were sintered using hot isostatic pressing and microstructures evaluated. The resultant microstructures contained uniform distribution of HfO2 and UO2 particles in the tungsten matrix with very low carbon content.展开更多
文摘We report a method to produce a uniform mixture of uranium dioxide spherical particles in a tungsten matrix. This method involves mixing 0.5 weight percent of high density polyethylene binder with 60 volume percent uranium dioxide spheres and 40 volume percent tungsten powders. Initially, hafnium oxide spheres were used as a surrogate for uranium dioxide spheres. The HfO2/W/PE powders were thoroughly mixed in a Turbula, then mixed on a hot plate above the drop point of the binder. These powders were then densified using spark plasma sintering. Microstructure was evaluated using scanning electron microscopy, density was measured and hardness measurements were made. Initial carbon content of the powders were measured and carbon content of the sintered materials was measured. Subsequently, W/UO2/Binder powders were mixed using the same methodology to ensure the process could be used for this system. These powders were sintered using hot isostatic pressing and microstructures evaluated. The resultant microstructures contained uniform distribution of HfO2 and UO2 particles in the tungsten matrix with very low carbon content.