The 3D location and dipole orientation of light emitters provide essential information in many biological,chemical,and physical systems.Simultaneous acquisition of both information types typically requires pupil engin...The 3D location and dipole orientation of light emitters provide essential information in many biological,chemical,and physical systems.Simultaneous acquisition of both information types typically requires pupil engineering for 3D localization and dual-channel polarization splitting for orientation deduction.Here we report a geometric phase helical point spread function for simultaneously estimating the 3D position and dipole orientation of point emitters.It has a compact and simpler optical configuration compared to polarization-splitting techniques and yields achromatic phase modulation in contrast to pupil engineering based on dynamic phase,showing great potential for single-molecule orientation and localization microscopy.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62105368,62275268,and 62375284)the Science and Technology Innovation Program of Hunan Province(No.2023RC3010)。
文摘The 3D location and dipole orientation of light emitters provide essential information in many biological,chemical,and physical systems.Simultaneous acquisition of both information types typically requires pupil engineering for 3D localization and dual-channel polarization splitting for orientation deduction.Here we report a geometric phase helical point spread function for simultaneously estimating the 3D position and dipole orientation of point emitters.It has a compact and simpler optical configuration compared to polarization-splitting techniques and yields achromatic phase modulation in contrast to pupil engineering based on dynamic phase,showing great potential for single-molecule orientation and localization microscopy.